

## Final Report

## 'Solaris'

Proposed Mixed Use Development, Lake Street, Foster Traffic and Parking Assessment

Prepared by:

MRCagney Pty Ltd

April 2017



### **Document Information**

| Client      | Eynoc Pty Ltd                              |
|-------------|--------------------------------------------|
| Job Number  | 6169                                       |
| Title       | Mixed Use Development Lake Street, Forster |
| Prepared by | MRCagney Pty Ltd                           |
|             | MILTON QLD                                 |

### **Quality Assurance Register**

| Issue | Description       | Prepared by | Reviewed<br>by | Authorised<br>by                | Date     |
|-------|-------------------|-------------|----------------|---------------------------------|----------|
| а     | Preliminary Draft | SL/RB       |                |                                 | 15/03/17 |
| b     | Final Draft       | RB          | GR             | Gerard Reardon<br>(RPEng #0821) | 05/04/17 |
| 1     | Final Report      | RB          | GR             | Gerard Reardon<br>(RPEng #0821) | 06/04/17 |
|       |                   |             |                |                                 |          |
|       |                   |             |                |                                 |          |

#### © 2015 MRCagney Pty Ltd.

This document and information contained herein is the intellectual property of MRCagney Pty Ltd and is solely for the use of MRCagney's contracted client. This document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied, without the written consent of MRCagney. MRCagney accepts no responsibility to any third party who may use or rely upon this document.



## Table of Contents

| 1. | Introd  | fuction                               | 1  |
|----|---------|---------------------------------------|----|
| 2. | Existi  | ng Conditions                         | 2  |
|    | 2.1     | Subject Site                          |    |
|    | 2.2     | Existing Road Network                 | 2  |
|    | 2.3     | Public Transport                      | 4  |
|    | 2.4     | Existing Kerbside Parking Utilisation | 6  |
| 3. | Propo   | osed Development                      | 8  |
|    | 3.1     | Description                           | 8  |
|    | 3.2     | Development Accesses                  | g  |
|    | 3.3     | Car Parking Provision                 | g  |
|    | 3.4     | Car Park Layout                       | 15 |
|    | 3.5     | Proposed Changes to Kerbside Parking  | 16 |
|    | 3.6     | Servicing Facilities                  | 17 |
|    | 3.7     | Pedestrian Access                     | 18 |
|    | 3.8     | Cycling Provisions                    | 18 |
| 4. | Traffic | Impact Assessment                     | 19 |
|    | 4.1     | Existing (2017) Traffic Volumes       | 19 |
|    | 4.2     | Future (2028) Background Traffic      | 21 |
|    | 4.3     | Traffic Generation and Distribution   | 21 |
|    | 4.4     | Design (2028) Traffic Volumes         | 24 |
|    | 4.5     | Impact on External Road Network       | 25 |
| 5  | Sumn    | nary of Findings                      | 30 |

#### Appendix A

Architectural Plans

#### Appendix B

Traffic Volume Diagrams and Data

#### Appendix C

Traffic Survey Data

#### Appendix D

MRCagney Figures

#### Appendix E

Parking Survey Data

#### Appendix F

Results of SIDRA Analyses



## 1. Introduction

MRCagney has been commissioned by Eynoc Pty Ltd to undertake a Traffic Impact Assessment for a proposed Mixed Use Development to be located on lots 11, 12 and 13 DP 47987 West Street, Forster.

The proposed Mixed Use Development will include:

- Council library as well as community and visitor centres;
- Retail and supermarket usages;
- Cinema;
- Childcare centre;
- Residential units and serviced apartments; and
- Hotel with adjoining amenities.

The development will be delivered over four stages with stage one of the development anticipated for a 2018/19 completion date. Accordingly, the 10-year design horizon year adopted for traffic analysis purposes was 2028.

This report is to accompany a Development Application to be lodged with Mid-Coast Council; accordingly, this report addresses the following external and internal traffic-related issues:

- The traffic impacts of the proposal on the adjacent external road network;
- The proposed car parking provision;
- The site access arrangements;
- The functional operation of the internal car traffic areas; and
- Servicing arrangements.

A summary of the findings of this report are included within Section 5.



## 2. Existing Conditions

### 2.1 Subject Site

The proposed development will be located on the corner of the intersection of Lake Street and West Street, Forster with frontages along both Lake Street, West Street and Middle Street. The subject site, illustrated below in Figure 2-1, is described as lots 11, 12 and 13 DP 47987 and is approximately 12,000m² in area.

Figure 2-1: Locality Plan



(source: Google Maps)

### 2.2 Existing Road Network

The characteristics of key roads near the subject site and therefore most likely to be used by visitors and residents of the development are summarised in Table 2-1 below.

Table 2-1: Characteristics of the Adjacent Road Network

| Road             | Carriageway Width<br>(Approx.) | Cross-Section      | Kerbside Parking Type              |
|------------------|--------------------------------|--------------------|------------------------------------|
| Head Street      | 19m                            | Four-lane, two-way | Parallel                           |
| Beach Street     | 14m                            | Two-lane, two-way  | Parallel                           |
| Little Street    | 14m                            | Two-lane, two-way  | Parallel                           |
| Memorial Drive   | 12m                            | Two-lane, two-way  | Parallel / Perpendicular           |
| Wallis Street    | 19m                            | Two-lane, two-way  | Parallel / Central                 |
| Lake Street      | 21m                            | Two-lane, two-way  | Parallel / Central / Angle         |
| West Street      | 15m                            | Two-lane, two-way  | Parallel / Central / Perpendicular |
| Middle Street    | 12m                            | Two-lane, two-way  | Parallel                           |
| MacIntosh Street | 20m                            | Four-lane, two-way | Parallel                           |



It is noted that there is substantial kerbside parking allocated along the site's frontages: Lake Street, West Street and Middle Street. This parking is a combination of angle, parallel and central parking. Photographs 2-1 to 2-3 below show typical cross-sections for these three frontages.



Photograph 2-1:

Looking west along Lake Street (site on the left)



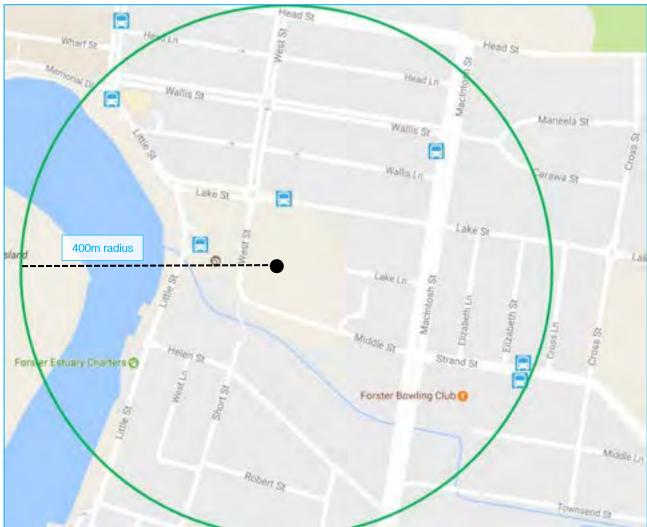
Photograph 2-2:

Looking south along West Street (site on the left)



Photograph 2-3:

Looking east along Middle Street (site on the left)


(source: Street View)



### 2.3 Public Transport

Several bus stops are located within a 400m radius of the subject site as seen in Figure 2-2 below. The bus stops are serviced by two separate transport companies (Forster Bus Lines and Busways).

Figure 2-2: Bus Stops Near Subject Site



Forster Bus Lines operates the 303, 304 and 305 bus services which typically operate Monday to Saturday, with the 305 running along the Lake Street frontage. An outbound bus stop for the 305 route is located close to the site, just east of the Lake Street / West Street intersection, with buses heading east along Lake Street. Busways operates the 150 and 151 long-distance coach bus services, which provide connection between Taree and Newcastle, travelling along Little Street. These routes are shown in Table 2-2 below.

Forster Bus Lines also runs school buses nearby, travelling along Head Street, MacIntosh Street and Lake Street. Busways also operates school only services however these are not in the immediate area of the development.



Table 2-2: Existing Bus Services

| Route | Region                                                                                                           | Frequency                                                                                                                       | Bus Route (near site) |
|-------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 150   | Taree Railway Station to Newcastle<br>Watt St - Bus Interchange                                                  | 2 services / day (Long<br>Distance Coach Service)                                                                               |                       |
| 151   | Taree Railway Station to Newcastle<br>Watt St - Bus Interchange                                                  | 2 services / day (Long<br>Distance Coach Service)                                                                               | 150<br>151            |
| 303   | Forster to Tuncurry Via Cape Hawke<br>Hospital and Legacy Village                                                | Monday to Friday Approximately every 30 minutes between 7:30am - 4pm  Saturday Approximately every 3 hours between 9am - 2:15pm |                       |
| 304   | Forster to Tuncurry Via Club Forster,<br>Bowling Clubs and Cape Hawke<br>Hospital                                | Monday to Friday Approximately every 90 minutes between 9am - 3pm  Saturday Approximately every 2-3 hours between 10am - 3:40pm | 303<br>304<br>305     |
| 305   | Stockland to Forster via One Mile<br>and Forster Golf Club<br>Forster to Stockland via Golf Club<br>and One Mile | Monday to Friday Approximately every 90 minutes between 7:30am - 4pm  Saturday 2 services / day at 9:30am and 2:50pm            |                       |



### 2.4 Existing Kerbside Parking Utilisation

A parking survey was undertaken every day from Thursday 16<sup>nd</sup> March 2017 to Monday 20<sup>th</sup> March 2017 (at times of 8:00am, 12:00 noon, 3:00pm and 7:00pm) to gauge the utilisation of the current supply of kerbside parking along the site's three frontages: Lake Street, West Street and Middle Street. The parking area was broken into 10 zones (seen in Figure 2-3) to further investigate which areas were underutilised and which were at capacity.

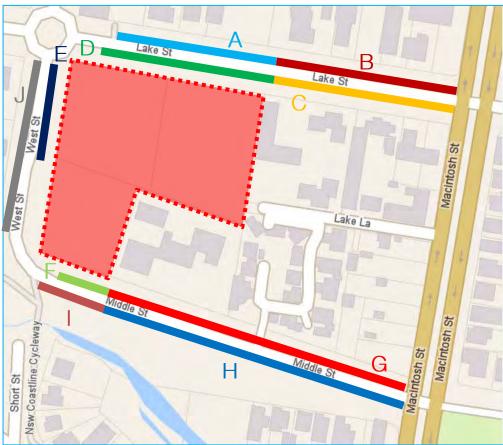



Figure 2-3: Kerbside Parking Utilisation Survey Zones

While the kerbside parking is not line-marked, based on AS2890.1:2004 (*Parking facilities - Off-street car parking*), the car parking capacity was calculated for all 10 zones. Using the peak survey data for weekdays and weekends, parking utilisation could be determined. Notably, the peak period for all weekdays surveyed was Monday at 12:00 noon and Sunday at 3:00pm for the weekend. The results of the parking utilisation survey are summarised in Table 2-3 below.

Table 2-3: Current Kerbside Parking Data

| Parking<br>Zone | Location       | Capacity | Peak Weekday<br>(Monday<br>12:00p noon) | Peak Weekday<br>Space Capacity | Peak Weekend<br>(Sunday<br>3:00pm) | Peak Weekend<br>Spare Capacity |
|-----------------|----------------|----------|-----------------------------------------|--------------------------------|------------------------------------|--------------------------------|
| Α               | Lake<br>Street | 25       | 4 (16%)                                 | 21 (84%)                       | 4 (16%)                            | 21 (84%)                       |
| В               | Lake<br>Street | 29       | 5 (17%)                                 | 24 (83%)                       | 1 (3%)                             | 28 (97%)                       |
| С               | Lake<br>Street | 25       | 0 (0%)                                  | 25 (100%)                      | 0 (0%)                             | 25 (100%)                      |



| Parking<br>Zone | Location         | Capacity | Peak Weekday<br>(Monday<br>12:00p noon) | Peak Weekday<br>Space Capacity | Peak Weekend<br>(Sunday<br>3:00pm) | Peak Weekend<br>Spare Capacity |
|-----------------|------------------|----------|-----------------------------------------|--------------------------------|------------------------------------|--------------------------------|
| D               | Lake<br>Street   | 35       | 0 (0%)                                  | 35 (100%)                      | 2 (6%)                             | 33 (94%)                       |
| Е               | West<br>Street   | 19       | 2 (11%)                                 | 17 (89%)                       | 0 (0%)                             | 19 (100%)                      |
| F               | Middle<br>Street | 7        | 1 (14%)                                 | 6 (86%)                        | 0 (0%)                             | 7 (100%)                       |
| G               | Middle<br>Street | 28       | 9 (32%)                                 | 19 (68%)                       | 1 (4%)                             | 27 (96%)                       |
| Н               | Middle<br>Street | 22       | 11 (50%)                                | 11 (50%)                       | 1 (5%)                             | 21 (95%)                       |
| I               | Middle<br>Street | 6        | 0 (0%)                                  | 6 (100%)                       | 0 (0%)                             | 6 (100%)                       |
| J               | West<br>Street   | 30       | 8 (27%)                                 | 22 (73%)                       | 4 (13%)                            | 26 (87%)                       |
| TOTAL           | -                | 226      | 40 (18%)                                | 186 (82%)                      | 13 (6%)                            | 213 (94%)                      |

The total parking utilised during every survey time has been plotted in Figure 2-4 below. The capacity line shows how much the parking surrounding the site is underutilised. At its peak (Monday at 12:00 noon), only 40 out of 226 spaces are being used (i.e. less than 20% of capacity). This utilisation shows how much kerbside parking will be available to users of the proposed development if required.

Figure 2-4: All Zones Parking Utilisation





## 3. Proposed Development

### 3.1 Description

The proposed mixed use development will consist of several major components, with areas and other important metrics summarised in Table 3-1 below:

Table 3-1: Proposed Development's Land Usage Schedule

| Land Usage          | Area                |
|---------------------|---------------------|
| Library             | 1,753m²             |
| Community Centre    | 476m² - 200 seats   |
| Visitor Centre      | 362m²               |
| Specialty Retail    | 282m²               |
| Restaurant          | 1,338m² - 647 seats |
| Supermarket         | 841m²               |
| Cinema              | 2,143m² - 800 seats |
| Childcare Centre    | 386m² - 50 children |
| Residential Units   | 143 units           |
| Serviced Apartments | 18 apartments       |
| Hotel               | 84 rooms            |
| Function Rooms      | 464m² - 218 seats   |
| Gym                 | 268m²               |
| Business Centre     | 89m²                |
| Nightclub           | 817m²               |

Architectural plans of the proposed development, prepared by TVS Architects, are included within Appendix A of this report. The development will feature two buildings consisting of 10 levels, with the other two buildings ranging between 7 and 9 levels. It should be noted that this report refers to Buildings A through C, consistent with the parking schedule, as opposed to the latest plans which differentiate Building C as two distinct buildings. Most servicing will be contained to the rear of the development just off West Street.

Car parking for the development will be provided over four levels. The public retail car park will be accessed via Lake Street and West Street. Hotel parking can be reached from the Middle Street access, while the podium residential parking can be accessed by Lake Street and West Street.

While the development will be constructed in four distinct stages, as indicated on the architectural plans (Appendix A), the assessment included in this report has considered the end state arrangement of full development.

Currently the configuration of the Lake Street, the West Street and Middle Street frontage of the proposed development comprises wide carriageways with limited line marking, limited signage and limited measures to control speed. Appropriately the configuration of these street frontages is proposed to be modified to provide a street design which complements activity, highly pedestrianised streetscape design of the proposed development. The changes proposed will engender low speed, provide formalised parking, provide for the proposed development accesses and provide for planned cycle infrastructure.

Specifically, the proposed modifications include:



- Installation of a roundabout at the Lake Street access:
- Provision of formalised central and kerbside parking along both Lake and West Streets;
- Provision of parallel parking along the Lake Street frontage to provide for a bus zone and a 2minute passenger / 20-minute commercial vehicle loading zone; and
- Formalisation of the design of West Street, south of Lake Street and part of Middle Street to operate similar to a low speed (i.e. 20 km/h) car park circulation aisle with perpendicular parking. The landscaping design reflects this operational intent.

### 3.2 Development Accesses

Access points for the development will be provided along all three frontages (Lake Street, West Street and Middle Street). All three can be used for ingress however egress is only possible via the Lake Street and Middle Street accesses.

#### 3.2.1 Lake Street Access

The Lake Street access will be off a roundabout proposed to be installed at the access. From Lake Street, residents will use access the ramp up to the podium parking, while the public will be directed to the ramp down to the basement carpark. The roundabout will also connect to the entrance of the Bella Villa Motor Inn (located on the northern side of Lake Street). The exit of the inn is located on the western approach to the roundabout, with exiting traffic able to merge just before the roundabout entrance.

The provision of the roundabout at the access enables motorists to be able to perform a U-turn if needed.

#### 3.2.2 West Street Access

The West Street access is an 'ingress-only access' and intended to be used by residents and service vehicles, providing ingress only to the development.

#### 3.2.3 Middle Street Access

The Middle Street access features kerbside set-down and a porte-cochère for drop-offs / pick-ups. This access is two-way to allow ingress to and egress from the retail, hotel and other usages on the southern part of the site.

Most hotel traffic will use this access as will retail and other usages.

### 3.3 Car Parking Provision

A total of 513 car parking spaces are provided in various areas of the development:

- Building A: Basement 1 / Lower Ground Level (252 spaces), Level 1 (17 spaces) and Level 2 (77 spaces);
- Building B: Level 1 (61 spaces) and Level 2 (64 spaces); and
- Building C: Basement 2 (42 spaces).

The car parking supply for the proposed development considered the various components of the development against the Great Lakes DCP and are detailed further below. Parking rates for land uses not specified in the Great Lakes DCP<sup>1</sup> have been sourced from the NSW RTA (now RMS) Guide to Traffic Generation Developments<sup>2</sup> or the NSW State Environmental Planning Policy<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup> "State Environmental Planning Policy (Housing for Seniors or People with a Disability)", NSW Government, 2004.



<sup>&</sup>lt;sup>1</sup> "Great Lakes Development Control Plan", Mid-Coast Council, 2013.

<sup>&</sup>lt;sup>2</sup> "Guide to Traffic Generating Developments", Roads and Traffic Authority, 2002.

Available on-street parking along the three frontages is in addition to the 513 off-street car spaces. Based on the current utilisation by users of the surrounding site, a majority of these spaces would be available for users of the proposed development to use in addition to the on-site parking provided.

Below are notes regarding all land usages and assumptions made when determining the rate of parking as well as the calculation of the final provision required. Conservatively, all floor areas were assumed to be gross leasable floor areas.

#### Library

No parking provision was specified for a library land usage in the Great Lakes DCP, therefore the commercial office / business premises rate was adopted:

Visitor parking: 44 spaces - 1 space per 40m<sup>2</sup> GLFA.

#### Community Centre

No parking provision was specified for a community centre land usage in the Great Lakes DCP, therefore the theatre rate was adopted. The community centre is specified to include 200 seats:

Visitor parking: 20 spaces - 1 space for every 10 seats.

#### Visitor Centre

No parking provision was specified for a visitor centre land usage in the Great Lakes DCP, therefore the commercial office / business premises rate was adopted:

Visitor parking: 10 spaces - 1 space per 40m<sup>2</sup> GLFA.

#### Residential Units

The parking provision specified for residential units in the State Environmental Planning Policy (SEPP) was chosen, as opposed to the Great Lakes DCP, because the intended audience for the units is seniors:

Total parking: 175 spaces - 0.5 car parking spaces for each bedroom per dwelling, with Great Lakes DCP rates used for penthouses.

It should be noted that 4 of the residential units are penthouses, therefore are not restricted to seniors. In these cases, the rates for serviced apartments have been used.

#### Serviced Apartments

The parking provisions specified for serviced apartments in the Great Lakes DCP can be seen below:

- Nesident parking: 19 spaces one (1) car parking space for each one (1) bedroom dwelling and 1.2 car parking spaces for each two (2) bedroom dwelling;
- Visitor parking: 4 spaces 0.2 visitor car parking spaces per dwelling; and
- Additional parking: 2 spaces 1 trailer space per eight (8) dwellings.

#### Hotel

The parking provision specified for a hotel in the NSW RTA Guide to Traffic Generating Developments is extracted below. It is being assumed that the hotel would be rated either 3 to 5 stars as this is the standard for this rate. The RTA rate of 1 space for every 4 rooms for 3 or 4 star hotels would be more applicable to a hotel located in a CBD area. As Forster is a regional centre, a rate of 1 space for every 2 rooms would be more suitable:

Visitor parking: 42 spaces - one (1) car parking space for every two (2) rooms.



It should also be noted that valet parking may allow more flexible parking options.

#### Restaurants

The number of seats available was calculated using a rate of 2.1m<sup>2</sup> per seat (per the RTA Guide to Traffic Generating Developments). The seating area provided translates to approximately 638 seats. Forster is identified in the Council's S94 parking contributions plans hence the reduced rate from the Great Lakes DCP can be used:

Visitor parking: 43 spaces - 1 space per 15 seats in an area identified in Council's S94 parking contributions plan.

#### Specialty Retail / Supermarket

The parking provision specified for both retail and supermarket land usages in the Great Lakes DCP can be seen below:

- Netail visitor parking: 12 spaces 1 space per 24m<sup>2</sup> GLFA; and
- Supermarket visitor parking: 35 spaces 1 space per 24m² GLFA.

#### Cinema

The theatre usage rate in the Great Lakes DCP was adopted:

Visitor parking: 80 spaces - 1 space for every 10 seats.

#### Gym

The parking provision specified for a gym land usage in the NSW RTA Guide to Traffic Generating Developments can be seen below. It was assumed that the development was in a metropolitan sub-regional area when selecting a specific rate from the above guide:

Visitor parking: 13 spaces - 4.5 spaces per 100m² GLFA.

#### Childcare

The parking provision specified for a childcare land usage in the NSW RTA Guide to Traffic Generating Developments can be seen below:

Visitor parking: 13 spaces - 1 space for every 4 children.

#### **Function Rooms**

The function rooms are located in Building C, the location of the hotel. These two uses are connected to each other, with users of the hotel likely to use the function rooms. It has been deemed that hotel parking numbers is inclusive of a provision for the function rooms.

#### **Business Centre**

No parking provision was specified for a business centre land usage in the Great Lakes DCP, therefore the commercial office / business premises rate was adopted (this usage would be like a library):

Visitor parking: 3 spaces - 1 space per 40m<sup>2</sup> GLFA.

#### Nightclub

No parking provision was specified for a nightclub land usage in the Great Lakes DCP, therefore the place of assembly rate was adopted:



Visitor parking: 82 spaces - 1 space per 10m² of seating area.



### 3.3.1 Parking Supply Summary

Table 3-2 below summarises the proposed allocation of car parking for the proposed mixed use development.

Table 3-2: Car Parking Provision Summary

| Type of Land<br>Use     | Unit                                                                                                             | Car Parking Rate                       | Resident<br>Provision | Visitor<br>Provision |
|-------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|----------------------|
| Library                 | 1,753m²                                                                                                          | 1 space / 40m² GLFA                    | -                     | 44                   |
| Community<br>Centre     | 476m² - 200 seats                                                                                                | 1 space / 10 seats                     | -                     | 20                   |
| Visitor Centre          | 362m <sup>2</sup>                                                                                                | 1 space / 40m² GLFA                    | -                     | 10                   |
| Residential<br>Units    | 5 (1-bedroom), 72 (2-bedroom), 64 (3-bedroom), 1 (4-bedroom), 1 (5-bedroom), 143 (total units) or 350 (bedrooms) | As specified above.                    | 175                   | -                    |
| Serviced<br>Apartments  | 12 (1-bedroom), 6 (2-bedroom), 18 (total)                                                                        | As specified above.                    | 19                    | 6                    |
| Restaurant              | 1,338m² seating area - 638 seats                                                                                 | 1 space / 15 seats                     | -                     | 43                   |
| Retail /<br>Supermarket | 1123m² (841m² for supermarket, 282m² for specialty retail)                                                       | 1 space / 24m² GLFA                    | -                     | 47                   |
| Cinema                  | 2,143m <sup>2</sup> - 800 seats                                                                                  | 1 space / 10 seats                     | -                     | 80                   |
| Nightclub               | 817m²                                                                                                            | 1 space / 10m² of seating area         | -                     | 82                   |
| Childcare<br>Centre     | 374m² - 50 children                                                                                              | 1 space / 4 children                   | -                     | 13                   |
| Gym                     | 268m²                                                                                                            | 4.5 spaces / 100m <sup>2</sup><br>GLFA | -                     | 13                   |
| Function<br>Rooms       | 464m² seating area - 221 seats                                                                                   | -                                      | -                     | -                    |
| Business<br>Centre      | 89m²                                                                                                             | 1 space / 40m² GLFA                    | -                     | 3                    |
| Hotel                   | 84 rooms                                                                                                         | 1 space / 2 rooms                      | -                     | 42                   |
|                         |                                                                                                                  | Total                                  | 194                   | 403                  |

<sup>\*</sup> Note: GLFA = Gross leasable floor area.

As indicated, the development would require **597 car spaces**. However, this doesn't consider the temporal demand which would be experienced. As the development contains a variety of usages, their peak periods are unlikely to align. For instance, the nightclub usage will only experience a parking demand during late evenings, while the gym would expect its highest demand during the early morning and afternoon.

Residential parking must always be provided for hence it is not included in temporal demand analysis. Parking for the hotel and function room usages is also not included in the temporal demand analysis as parking was assigned for these usages in Building C. Regarding the childcare centre, it is proposed that 13 on-street space be designated for parent and staff use. Most users will be in a rush and will not want to look for a space inside a parking structure.

Table 3-3 below shows the expected utilisation percentage for each usage at various times of the week and day, while Table 3-4 displays this same information in terms of parking spaces.



It is expected some patrons would utilise on-street parking regardless of the provision for off-street parking. It is noted that the current low utilisation of on-street parking indicates that this would not create an adverse impact. Half of nightclub, restaurant and community centre patrons are likely to park on the street for convenience, as well as 100% of childcare centre visitors. Adjusted totals are included in the above table.

Upper Basement Level 1 provides 252 car spaces for all these usages. Around midday during the weekend is the period of highest utilisation. Factoring in temporal demand (i.e. 221 spaces), the parking provided will meet the expected peak demand. Even if all nightclub, restaurant, childcare and community centre users were to use on-site parking, the public parking area would still be sufficient (245 spaces demanded of the 252 provided).

In summary, the proposed parking supply is considered adequate.

Table 3-3: Temporal Demand by Percentage

| Type of Land Use     | Policy      |     | Week | kday |      |     | Week | cend |      |
|----------------------|-------------|-----|------|------|------|-----|------|------|------|
| Type of Land Ose     | Requirement | 8am | 12pm | 4pm  | 9pm  | 8am | 12pm | 4pm  | 9pm  |
| Library              | 44          | 15% | 50%  | 100% | 0%   | 15% | 100% | 50%  | 0%   |
| Community Centre     | 20          | 50% | 50%  | 100% | 75%  | 50% | 75%  | 75%  | 0%   |
| Visitor Centre       | 10          | 20% | 50%  | 100% | 0%   | 20% | 100% | 100% | 0%   |
| Restaurant           | 43          | 0%  | 30%  | 100% | 100% | 0%  | 75%  | 100% | 100% |
| Retail / Supermarket | 47          | 20% | 20%  | 100% | 0%   | 20% | 100% | 20%  | 0%   |
| Cinema               | 80          | 0%  | 10%  | 20%  | 30%  | 0%  | 100% | 100% | 60%  |
| Nightclub            | 82          | 0%  | 0%   | 0%   | 100% | 0%  | 0%   | 5%   | 100% |
| Gym                  | 13          | 30% | 15%  | 100% | 15%  | 30% | 50%  | 30%  | 10%  |
| Business Centre      | 3           | 15% | 50%  | 100% | 0%   | 0%  | 0%   | 0%   | 0%   |

Table 3-4: Temporal Demand by Parking Spaces

| Tune of Land Has     | Policy      |     | Week | kday |     |     | Week | cend |     |
|----------------------|-------------|-----|------|------|-----|-----|------|------|-----|
| Type of Land Use     | Requirement | 8am | 12pm | 4pm  | 9pm | 8am | 12pm | 4pm  | 9pm |
| Library              | 44          | 7   | 22   | 44   | 0   | 7   | 44   | 22   | 0   |
| Community Centre     | 20          | 10  | 10   | 20   | 15  | 10  | 15   | 15   | 0   |
| Visitor Centre       | 10          | 2   | 5    | 9    | 0   | 2   | 9    | 9    | 0   |
| Restaurant           | 43          | 0   | 13   | 43   | 43  | 0   | 33   | 43   | 43  |
| Retail / Supermarket | 47          | 10  | 10   | 47   | 0   | 10  | 47   | 10   | 0   |
| Cinema               | 80          | 0   | 8    | 16   | 24  | 0   | 80   | 80   | 48  |
| Nightclub            | 82          | 0   | 0    | 0    | 82  | 0   | 0    | 5    | 82  |
| Gym                  | 13          | 4   | 2    | 13   | 2   | 4   | 7    | 4    | 1   |
| Business Centre      | 3           | 1   | 2    | 3    | 0   | 0   | 0    | 0    | 0   |
| TOTAL                | 342         | 39  | 77   | 205  | 168 | 38  | 245  | 198  | 176 |
| ADJUSTED TOTAL       | 270         | 34  | 65   | 173  | 98  | 33  | 221  | 166  | 113 |

### 3.4 Car Park Layout

The overall parking layout has been reviewed. The layout of the car parking of the proposed development, as well as the internal ramps, is generally in accord with AS2890.1:2004 (refer to MRCagney Figures D1 to D13 within Appendix D).

Parking provided for **residents** must be in accordance with the following dimensions from AS2890.1:2004 (User Class Type 1A):

- Car park spaces should be a minimum of 5.4m in length and 2.4m in width;
- Tandem car park spaces should be a minimum of 10.8m in length;
- Parking aisles should be a minimum of 5.8m in width; and
- Disability car park spaces should be a minimum of 3.2m in width (AS2890.5:1993).

Checking the dimensions of the residential car park (seen in Appendix D, Figures D4 and D6 to D7) confirms compliance with AS2890.1:2004:

- Car park spaces are 5.4m in length and 3.05 to 3.2m in width to comply with state's SEPP policy;
- Tandem car park spaces are 10.8m in length;
- Parking aisles are 5.8 to 6.2m in width; and
- Disability car park spaces are 3.65 to 3.8m in width.

Parking provided for **public users**, in particular retail users must be in accordance with the following dimensions from AS2890.1:2004 (User Class Type 3):

- Car park spaces should be a minimum of 5.4m in length and 2.6m in width;
- Parking aisles should be a minimum of 5.8m in width;
- Small car spaces should be a minimum of 5.0m in length and 2.3m in width; and
- Disability car park spaces should be a minimum of 2.4m in width with an adjacent vacant bay.

Checking the dimensions of the retail car park (seen in Appendix D, Figures D9 to D12) confirms compliance with AS2890.1:2004:

- Car park spaces are 5.4m in length and 2.6m in width;
- Parking aisles are 6.0 to 6.85m in width;
- Small car spaces are 5.4m in length and 2.4m in width; and
- Disability car park spaces are 2.6m in width with an adjacent vacant bay.

Parking provided for **hotel users** must be in accordance with the following dimensions from AS2890.1:2004 (User Class Type 2):

- Car park spaces should be a minimum of 5.4m in length and 2.5m in width; and
- Parking aisles should be a minimum of 5.8m in width.

Checking the dimensions of the hotel car park (seen in Appendix D, Figure D13) confirms compliance with AS2890.1:2004:

- Car park spaces are 5.4m in length and 2.5m in width; and
- Parking aisles are 5.81 to 6.2m in width.



All internal ramps are either graded 1 in 5 (20%) or 1 in 10 (10%), with all ramps supporting two-way movement and at least 5.5m in width. Therefore, all internal ramps are grade and width compliant (refer to Figures D35-D40 in Appendix D).

Circulation roads (i.e. aisles without parking) within the development must also be a minimum of 5.5m in width. All such cases within the development are 5.5 to 5.8m in width, hence compliance is achieved.

Swept path analysis for a 5.2m large car (B99), throughout the various car parks and ramps as well as the main access points, can be seen in Appendix D, Figures D25 to 34. These demonstrate there is adequate space for manoeuvring.

### 3.5 Proposed Changes to Kerbside Parking

The kerbside parking will be changed slightly along the three frontages. Zones that were not immediate frontage will remain unchanged. The angle parking along the Lake Street frontage, originally in zones A and D, will be replaced by perpendicular median parking. This will reduce the combined capacity of these zones from 60 to 26. Zones E and J, situated along West Street, would also be reconfigured but remain as perpendicular parking. However, this will only result in a minor loss of spaces: 19 to 18 and 30 to 26 respectively. Due to a major access point now being in Zone F (the Middle Street frontage), no kerbside parking will be allocated in this area or the opposite Zone I. This only means a change of 13 spaces.

In terms of total kerbside capacity, the current total of 226 would be reduced to 174. There are negligible space losses over the three frontages, apart from the Lake Street reconfiguration which significantly reduced kerbside capacity at the front of the site. These changes are reflected in Table 3-5, including zone-specific breakdowns.

| Table 3-5: Kerbside Parking Capacity Changes Due to the Devel |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

| Parking Zone | Location      | Current Capacity | Proposed Capacity | Capacity Loss |
|--------------|---------------|------------------|-------------------|---------------|
| А            | Lake Street   | 25               | 13                | 12            |
| В            | Lake Street   | 29               | 29                | -             |
| С            | Lake Street   | 25               | 25                | -             |
| D            | Lake Street   | 35               | 13                | 22            |
| E            | West Street   | 19               | 18                | 1             |
| F            | Middle Street | 7                | 0                 | 7             |
| G            | Middle Street | 28               | 28                | -             |
| Н            | Middle Street | 22               | 22                | -             |
| I            | Middle Street | 6                | 0                 | 6             |
| J            | West Street   | 30               | 26                | 4             |
|              | Total         | 226              | 174               | 42            |

Although reconfiguration due to the development means a reduction in the availability of on-street spaces (i.e. 226 to 174), the amount of spaces available for development patrons, when accounting for people who currently use on-street parking (peak usage of 40), is expected to be more than necessary.



### 3.6 Servicing Facilities

The Great Lakes DCP does not appear to provide guidance on the appropriate service vehicle recommended for each land usage. Service vehicles will in most cases enter via the West Street access (ingress only) and exit via the Middle Street access. Loading zone and bays are located just inside the access point, at the rear of the retail and supermarket areas.

Based on the requirements of the potential usages on the site, the development has been designed for manoeuvring of a 12.5m Heavy Rigid Vehicle (HRV) generally for residential and other uses, a 5.37m Van and 6.4m Small Rigid Vehicle (deliveries) for the retail / food outlets, and a 19.0m Articulated Vehicle (AV), also for retail usages but more specifically for the supermarket. Provision has also been made for Refuse Collection Vehicles (RCV), although this will generally be catered for by the HRV requirements with some potential localised treatments. The design vehicles assigned to the different land usages are summarised in Table 3-6.

In terms of supply of loading bays:

- Two bays will be located off the West Street ingress with capacity for a 19.0m AV;
- Refuse collection will be undertaken in the central servicing area and adjoining to the hotel (refer to Appendix A for a waste management plan);
- Two bays will be located adjacent to the hotel with capacity for an SRV; and
- A kerbside loading zone can be located along both Lake Street and West Street.

Swept path analysis for the service vehicles designed for illustrate that the internal manoeuvrability of the development is generally satisfactory. These can be seen in Appendix D, Figures D14 to D23.

Table 3-6: Recommended Design Vehicles

| Use or user class                                | Design vehicle |
|--------------------------------------------------|----------------|
| Council Library, Community and Visitor Centre    | HRV            |
| Supermarket                                      | AV             |
| Cinema                                           | HRV            |
| Childcare Centre                                 | MRV            |
| Residential Units, Serviced Apartments and Hotel | HRV            |
| Nightclub                                        | MRV            |

Note: MRV: medium rigid vehicle (8.8m), HRV: heavy rigid vehicle (12.5m), AV: articulated vehicle (19.0m).



#### 3.7 Pedestrian Access

Immediately adjacent to the site, there is a pedestrian / cycle footpath which connects the esplanade to the southwest corner of the site as shown in Figure 3-1. This external pedestrian linkage provides a convenient and scenic access route between the development and surrounding attractors such as the small entertainment and restaurant precinct along Memorial Drive (just northwest of the site) as well as restaurants along Little Street.

Outside of the immediate area surrounding the development, it also runs across the Forster-Tuncurry Bridge, connecting to Tuncurry Village in the north-west and Forster Village and Forster Keys in the south-east. A further route connects to the beach area due north of the site; this route can be reached by staying on the boardwalk that runs along Cape Hawke Harbour instead of branching off to cross the bridge.



Figure 3-1: Pedestrian Access Via Esplanade

Source: O2 Landscape Architecture

### 3.8 Cycling Provisions

Following discussions with Council Officers, it is understood that an off-street shared pedestrian / cycle path is planned for the northern side of Lake Street. The proposed areas for both Lake Street and West Street, along the subject site frontages, has taken into consideration this planned shared pedestrian / cycle path.

The same walking route previously mentioned (connecting Tuncurry Village to Forster Village and Forster Keys) is a shared path, meaning cyclists have easy access to major surrounding areas.

The provision of bicycle parking for visitors of the development will be finalised during the design development phase, however it is envisaged that cycle racks will be located in common areas throughout the development for visitors.

Further, space designated for resident bicycle parking will be provided inside units while extensive parking and end-of-trip facilities / amenities will be provided for employees.



## 4. Traffic Impact Assessment

### 4.1 Existing (2017) Traffic Volumes

As a part of the traffic assessment, detailed traffic surveys were undertaken at the key intersections near the site, namely:

- Intersection 1 Lake Street / MacIntosh Street;
- Intersection 2 Lake Street / West Street;
- Intersection 3 West Street / Wallis Street;
- Intersection 4 West Street / Head Street;
- Intersection 5 Head Street / Beach Street; and
- Intersection 6 Beach Street / Little Street / Wallis Street / Memorial Drive.
- Intersection 7 MacIntosh Street / Middle Street

These intersections were chosen based on consideration of the expected distribution of generated traffic and acknowledging that, given the nature of the layout of the surrounding road network, once further away from the site the generated traffic will distribute throughout the network, decreasing the impact on traffic operations.

The surveys categorised vehicle type (light and heavy) and traffic flow into 15-minute time intervals.

The traffic surveys for the intersections 1 - 6 were undertaken at the locations illustrated in Figure 4-1 during the following periods:

Thursday 2<sup>nd</sup> March 2017: 7:30AM to 9:30AM; and

■ Thursday 2<sup>nd</sup> March 2017: 2:30PM to 4:30PM.

Survey data for intersection 7 was taken on a different date, Tuesday 7<sup>th</sup> March 2017, due to issues occurring at that location during the original survey period. Despite this, the same survey times were used. These time periods are typical peak operating periods of the proposed land usages of the proposed development.



Figure 4-1: Traffic Survey Locations



The observed peak hour periods of the road network are listed below:

AM Peak Hour: 8:15AM to 9:15AM; and

• PM Peak Hour: 2:45PM to 3:45PM.

The 2017 observed traffic volumes near the subject site during the weekday AM and PM peak hours are illustrated in Appendix B, Figures B1 to B2.

The traffic survey volumes are provided in Appendix C in their entirety.



### 4.2 Future (2028) Background Traffic

The opening year of the proposed development is anticipated to be 2018/19, meaning a 10-year design horizon year of 2028 was selected for traffic analysis purposes.

A 2% compounded annual growth rate has been applied to existing traffic volumes, identified from the peak hour surveys undertaken on the 2<sup>nd</sup> March 2017, to determine the background traffic for the 2028 horizon year, as this is the most critical for the traffic impact assessment.

The 2018 and 2028 Base traffic volumes (i.e. no development) near the subject site during the weekday AM and PM peak hours are illustrated in Appendix B, Figures B3 to B4 for 2018, as well as Figures B5 to B6 for 2028.

#### 4.3 Traffic Generation and Distribution

Utilising published trip rates from the New South Wales RTA (now RMS) Guide to Traffic Generating Developments as well as the Institute of Transportation Engineers (ITE) Trip Generation Manual<sup>4</sup>, the traffic expected to be generated by the proposed development during the road peak hour periods was calculated. Notes regarding rate selection for each land usage is displayed in Table 4-1 with final calculations summarised in Table 4-2. It should be noted that the total generation will be conservative as no reduction has been incorporated for the utilisation of the uses by residents of the development.

The following facilities are ancillary to the residential units, to be used by residents only:

- Resident's Club on Level 1 (355m²);
- Resident's Recreational Facilities on Level 5 (559m²); and
- Nesident's Amenities / Sauna on Level 6 (53m²).

<sup>&</sup>lt;sup>4</sup> "Trip Generation Manual", Institute of Transportation Engineers, 2006.



Table 4-1: Land Usage Traffic Generation Notes and Characteristics

| Type of Land Usage                                            | Category    | Units         | Description / Notes                                                                                                                                                 |
|---------------------------------------------------------------|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residential Units                                             | Residential | 143 units     | A standard rate was applied for all units despite differing sizes as ITE didn't differentiate based on size.                                                        |
| Serviced Apartments                                           | Residential | 18 apartments | Closest in purpose and operation to the residential units as a hotel usage wasn't compatible with the development's intent.                                         |
| Hotel                                                         | Hotel       | 84 rooms      | An occupancy of 85% was assumed.                                                                                                                                    |
| Restaurant                                                    | Retail      | 1,338m²       | There are four distinct restaurant areas spread throughout the development; breakfast is not expected to be served therefore no AM generation is expected.          |
| Supermarket                                                   | Retail      | 841m²         | The estimates are good however AM generation is likely conservative as it is envisaged that the supermarket won't generate traffic early in the morning.            |
| Retail                                                        | Retail      | 282m²         | Some space is allocated to specialty retail but without a specific specialty, this rate is general and may slightly differ.                                         |
| Library                                                       | Other       | 1,753m²       | These are adjoining land uses mainly intended for use by residents,                                                                                                 |
| Community Centre                                              | Other       | 476m²         | therefore estimates will likely be conservative.                                                                                                                    |
| Visitor Centre                                                | Other       | 362m²         | No trips should be solely generated by the visitor centre as users are likely visiting another part of the development.                                             |
| Cinema                                                        | Other       | 800 seats     | This will be conservative as likely users will be residents, with usage possibly restricted to private screenings and a reduced schedule compared to other cinemas. |
| Nightclub                                                     | Other       | 817m²         | This will also likely be conservative as users are likely to use other modes of transport (walk, taxi, Uber, etc.).                                                 |
| Gym                                                           | Other       | 268m²         | The gym will be public so cannot be considered ancillary, with the rate for a health / fitness club used.                                                           |
| Function Rooms                                                | Other       | 464m²         | Expected to behave like the restaurant land usage, therefore restaurant rates have been adopted.                                                                    |
| Business Centre                                               | Other       | 89m²          | Expected to behave like the library land usage, therefore library rates have been adopted.                                                                          |
| Childcare Centre                                              | Other       | 50 children   | While rates per GFA were available, rates relating to children in attendance gave a better representation.                                                          |
| Common Facilities +<br>Back of Housing +<br>Lobby + Amenities | Other       | -             | These parts of the development were deemed as ancillary as they were not expected to solely generate traffic.                                                       |



Table 4-2: Development Traffic Generation during the Road Peak Hour Periods

| Type of Land Usage                                      | Rate<br>Source |                          | Generation Rate<br>k hour vehicles) |     | raffic Generation<br>(vph) |
|---------------------------------------------------------|----------------|--------------------------|-------------------------------------|-----|----------------------------|
|                                                         | Source         | AM                       | PM                                  | AM  | PM                         |
| Residential Units                                       | ITE            | 0.51 / unit              | 0.62 / unit                         | 73  | 89                         |
| Serviced Apartments                                     | ITE            | 0.51 / unit              | 0.62 / unit                         | 9   | 11                         |
| Hotel                                                   | ITE            | 0.56 / room              | 0.59 / room                         | 40  | 42                         |
| Restaurant                                              | RTA            | -                        | 5 / 100m²                           | -   | 67                         |
| Supermarket                                             | ITE            | 3.5 / 100m <sup>2</sup>  | 11.25 / 100m <sup>2</sup>           | 29  | 95                         |
| Retail                                                  | -              | 1 / 100m²                | 3 / 100m²                           | 3   | 8                          |
| Library                                                 | ITE            | 1.14 / 100m <sup>2</sup> | 7.63 / 100m <sup>2</sup>            | 20  | 134                        |
| Community Centre                                        | ITE            | 1.74 / 100m <sup>2</sup> | 1.77 / 100m <sup>2</sup>            | 8   | 8                          |
| Visitor Centre                                          | -              |                          | Ancillar                            | У   |                            |
| Cinema                                                  | ITE            | -                        | 0.1 / seat                          | -   | 80                         |
| Nightclub                                               | RTA            | -                        | 10 / 100m²                          | -   | 82                         |
| Gym                                                     | ITE            | 1.3 / 100m²              | 4.36 / 100m <sup>2</sup>            | 3   | 12                         |
| Function Rooms                                          | RTA            | -                        | 5 / 100m²                           | -   | 23                         |
| Business Centre                                         | ITE            | 1.14 / 100m <sup>2</sup> | 7.63 / 100m <sup>2</sup>            | 1   | 7                          |
| Childcare Centre                                        | ITE            | 0.8 / child              | 0.82 / child                        | 40  | 41                         |
| Common Facilities + Back of Housing + Lobby + Amenities | -              |                          | Ancillar                            | у   | •                          |
|                                                         | •              | •                        | Total                               | 227 | 698                        |

Notes: Common facilities, back of housing, lobby and amenities have been deemed as ancillary; all areas are measurements of gross floor area (GFA) and traffic generation rates have units of vehicles per hour (vph).

Where possible, in and out splits were adopted from ITE's Trip Generation Manual. Specific in / out splits for all land usages can be seen in the Traffic Generation table at the end of Appendix B.

The way in which land usages were allocated into categories (retail, hotel, retail and other) can be seen earlier in Table 4-1. After grouping specific land usages into larger categories, the traffic they generated was allocated to certain access points (both ingress and egress). Appendix B, Figures B7 to B14, display the traffic generated by the four sub-categories: residential, hotel, retail and other.

This is summarised in Table 4-3, along with total ingress and egress traffic generated by the development:



Table 4-3: Generated Traffic In / Out Splits and Allocated Accesses

| Category of Land Usage | Access Allocation                                                                           | Weekday AM<br>Generation |       | Weekday PM Traffic<br>Generation (vph) |       |  |
|------------------------|---------------------------------------------------------------------------------------------|--------------------------|-------|----------------------------------------|-------|--|
| Land Osage             |                                                                                             | In / Out                 | Total | In / Out                               | Total |  |
| Residential            | Ingress: 50% Lake Street, 50% West Street; Egress: 100% Lake Street.                        | 16 / 66                  | 82    | 65 / 35                                | 100   |  |
| Hotel                  | Ingress: 100% Middle Street;<br>Egress: 100% Middle Street.                                 | 24 / 16                  | 40    | 22 / 20                                | 42    |  |
| Retail                 | Ingress: 75% Lake Street, 25% Middle Street; Egress: 100% Lake Street.                      | 19 / 13                  | 32    | 93 / 77                                | 170   |  |
| Other                  | Ingress: 70% Lake Street, 30% Middle Street;<br>Egress: 75% Lake Street, 25% Middle Street. | 43 / 30                  | 73    | 239 / 148                              | 387   |  |
|                        | Total                                                                                       | 103 / 124                | 227   | 419 / 279                              | 698   |  |

The directional assignment of generated traffic adopted in this assessment was split between three different routes for simplicity:

To / from the north (via West Street): 45%;

To / from the north (via Little Street / Beach Street): 45%; and

To / from the south (via MacIntosh Street):
10%.

In reality, this would not be the case, therefore final SIDRA summaries will be conservative with an exaggerated stress on keys intersections: Head Street / Beach Street, Head Street / West Street and MacIntosh Street / Lake Street. The selected distribution still allowed for all seven existing intersections as well as the three new access intersections (detailed in section 4.5.1) to operate satisfactorily, even with traffic assigned through the busiest movements and intersections.

The total traffic generated by the proposed development during peak hour periods can be seen in Appendix B, Figures B15 to B16.

### 4.4 Design (2028) Traffic Volumes

The Design (with development) traffic volumes were determined by adding the development traffic volumes to the Base (without development) volumes during weekday AM and weekday PM peak hour periods for the 10-year design horizon of 2028.

The 2018 Design traffic volumes were calculated as:

=  $(2017 \text{ observed traffic volumes } \times (1 + 2\%)^1) + \text{Development Traffic.}$ 

The 2028 Design traffic volumes were calculated as:

=  $(2017 \text{ observed traffic volumes x } (1 + 2\%)^{11}) + \text{Development Traffic.}$ 

The 2018 and 2028 Design traffic volumes for the proposed development are illustrated in Appendix B, Figures B17 to B20.



### 4.5 Impact on External Road Network

#### 4.5.1 Intersection Operation

The operation of the intersections of interest has been assessed using SIDRA 7.0. SIDRA calculates the amount of delay to vehicles using an intersection and, amongst other performance measures, gives a Level of Service (LoS) rating which indicates the relative performance of traffic movements within the intersection.

Table 4-4 presents the criteria generally applied to intersection performance. The Level of Service is determined from the calculated delay to traffic movements, which is a representation of driver frustration, fuel consumption and increased travel time. There are six Level of Service categories ranging from A (very low delay and very good operating conditions) to F (over saturation where arrival rates exceed intersection capacity). Typically, a Level of Service D or better is acceptable.

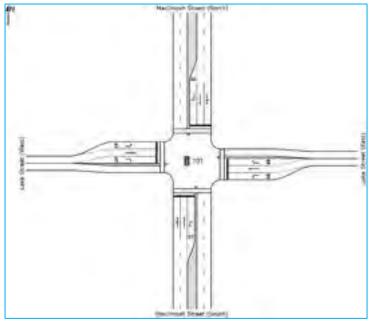
Table 4-4: Intersection Level of Service Criteria

| Level of<br>Service | Average Delay per Vehicle (sec) | Expected Delay                          |
|---------------------|---------------------------------|-----------------------------------------|
|                     | Traffic Sign                    | nals and Roundabouts                    |
| Α                   | 0-14                            | Little or no delay                      |
| В                   | 15-28                           | Minimal delay                           |
| С                   | 29-42                           | Satisfactory delays with spare capacity |
| D                   | 43-56                           | Satisfactory but near capacity          |
| Е                   | 57-70                           | At capacity                             |
| F                   | >70                             | Extremely delay, unsatisfactory         |

Assuming continued growth within the local road network, the 10-year post development horizon scenario for 2028 is the most critical for the Base (without development) and Design (with development) cases.

Therefore, summary SIDRA results for these scenarios have been provided in tables under their respective intersection heading, along with the existing geometry of the intersections used.

Three further intersections were analysed in addition to the existing seven. One roundabout and two priority intersections will be added to the road network for the purpose of allowing access to the development. These are numbered in the following manner:


- Intersection 8 Lake Street / Site Access 1;
- Intersection 9 West Street / Site Access 2; and
- Intersection 10 Middle Street / Site Access 3.



#### 4.5.2 Intersection 1: MacIntosh Street / Lake Street

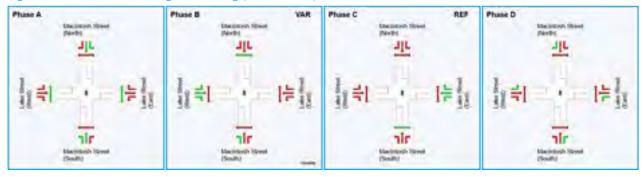

The MacIntosh Street / Lake Street intersection modelled can be seen in Figure 4-2.

Figure 4-2: Intersection 1 (Existing Intersection Layout)



Signal phasing was determined based on a user-given cycle time of 120 seconds. The phasing for the AM and PM design peak scenarios was identical, provided in Figure 4-3.

Figure 4-3: Intersection 1 Signal Phasing (AM and PM)

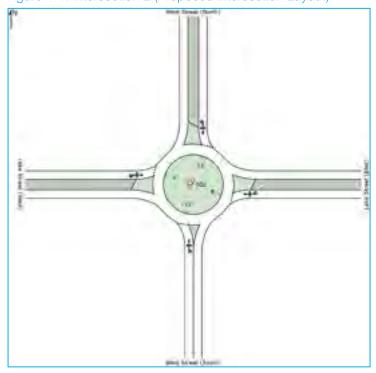


The results regarding the performance of this intersection, seen in Table 4-5, suggest that it will operate within acceptable limits during both the 2027 AM and PM peaks, as well as with or without the proposed development.

The addition of development traffic translates to a slight worsening for the north, south and east approaches but an improvement in the west approach during the PM peak. The AM peak is very similar between the base and design cases except for the right-turn movement on the Lake Street west approach, one of the primary routes used by exiting vehicles.



Table 4-5: Intersection 1 Performance


|          |          |      | 2                      | 028 Bas               | e Volum    | es                     |                       |      | 20                     | )28 Desiç             | gn Volum   | ies                    |                       |
|----------|----------|------|------------------------|-----------------------|------------|------------------------|-----------------------|------|------------------------|-----------------------|------------|------------------------|-----------------------|
| ach      | nent     | V    | /eekday Al             | M                     | Weekday PM |                        |                       | V    | Veekday A              | М                     | Weekday PM |                        |                       |
| Approach | Movement | DOS  | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS  | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |
|          | L        | 0.57 | 123                    | 41                    | 0.56       | 133                    | 36                    | 0.57 | 123                    | 41                    | 0.59       | 138                    | 38                    |
| S        | Т        | 0.57 | 123                    | 36                    | 0.56       | 133                    | 30                    | 0.57 | 123                    | 36                    | 0.59       | 138                    | 32                    |
|          | R        | 0.31 | 13                     | 69                    | 0.51       | 21                     | 70                    | 0.31 | 13                     | 69                    | 0.51       | 21                     | 70                    |
|          | L        | 0.07 | 14                     | 29                    | 0.08       | 14                     | 35                    | 0.07 | 14                     | 29                    | 0.08       | 15                     | 35                    |
| Е        | Т        | 0.25 | 45                     | 34                    | 0.17       | 26                     | 40                    | 0.25 | 45                     | 34                    | 0.18       | 26                     | 40                    |
|          | R        | 0.80 | 152                    | 50                    | 0.67       | 104                    | 51                    | 0.80 | 152                    | 50                    | 0.67       | 106                    | 52                    |
|          | L        | 0.81 | 206                    | 49                    | 0.65       | 164                    | 39                    | 0.81 | 206                    | 49                    | 0.68       | 168                    | 40                    |
| N        | Т        | 0.81 | 206                    | 43                    | 0.65       | 164                    | 32                    | 0.81 | 206                    | 43                    | 0.68       | 168                    | 34                    |
|          | R        | 0.75 | 31                     | 73                    | 0.57       | 23                     | 71                    | 0.75 | 31                     | 73                    | 0.57       | 23                     | 71                    |
|          | L        | 0.02 | 1                      | 28                    | 0.03       | 2                      | 28                    | 0.02 | 1                      | 28                    | 0.03       | 2                      | 27                    |
| w        | Т        | 0.16 | 15                     | 51                    | 0.23       | 22                     | 51                    | 0.16 | 15                     | 51                    | 0.19       | 22                     | 48                    |
|          | R        | 0.36 | 32                     | 59                    | 0.67       | 67                     | 61                    | 0.42 | 38                     | 59                    | 0.66       | 77                     | 58                    |

Note: Practical Maximum Degree of Saturation (X<sub>o</sub>) for a Signalised Intersection is 0.90.

### 4.5.3 Intersection 2: West Street / Lake Street

The West Street / Lake Street intersection modelled can be seen in Figure 4-4. Existing parking separates opposing lanes on the north and west approaches, with new parking to do the same on the east approach.

Figure 4-4: Intersection 2 (Proposed Intersection Layout)

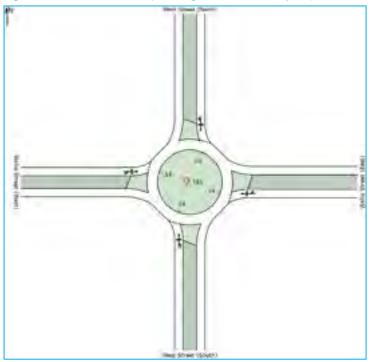




The results of SIDRA analysis for this intersection (seen in Table 4-6) indicate that the roundabout will operate well within acceptable limits for both 2028 AM and PM peak periods, and with or without the proposed development.

This intersection will be used by most of the traffic exiting and entering the development. Even with large numbers of development traffic, this roundabout functions in a satisfactory manner.

Table 4-6: Intersection 2 Performance


|          |          |      | 2                      | 028 Bas               | e Volum    | es                     |                       |            | 20                     | )28 Desiç             | gn Volum   | es                     |                       |
|----------|----------|------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|
| ach      | nent     | V    | /eekday Al             | M                     | Weekday PM |                        |                       | Weekday AM |                        |                       | Weekday PM |                        |                       |
| Approach | Movement | DOS  | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |
|          | L        | 0.07 | 2                      | 6                     | 0.06       | 2                      | 5                     | 0.10       | 4                      | 6                     | 0.13       | 5                      | 7                     |
| S        | Т        | 0.07 | 2                      | 6                     | 0.06       | 2                      | 6                     | 0.10       | 4                      | 7                     | 0.13       | 5                      | 7                     |
|          | R        | 0.07 | 2                      | 10                    | 0.06       | 2                      | 9                     | 0.10       | 4                      | 10                    | 0.13       | 5                      | 10                    |
|          | L        | 0.18 | 7                      | 5                     | 0.12       | 5                      | 5                     | 0.26       | 11                     | 5                     | 0.33       | 15                     | 6                     |
| Е        | Т        | 0.18 | 7                      | 5                     | 0.12       | 5                      | 5                     | 0.26       | 11                     | 5                     | 0.33       | 15                     | 6                     |
|          | R        | 0.18 | 7                      | 8                     | 0.12       | 5                      | 8                     | 0.26       | 11                     | 9                     | 0.33       | 15                     | 9                     |
|          | L        | 0.06 | 2                      | 5                     | 0.11       | 4                      | 5                     | 0.10       | 4                      | 5                     | 0.32       | 15                     | 7                     |
| N        | Т        | 0.06 | 2                      | 5                     | 0.11       | 4                      | 5                     | 0.10       | 4                      | 5                     | 0.32       | 15                     | 7                     |
|          | R        | 0.06 | 2                      | 9                     | 0.11       | 4                      | 9                     | 0.10       | 4                      | 9                     | 0.32       | 15                     | 10                    |
|          | L        | 0.09 | 3                      | 6                     | 0.13       | 5                      | 5                     | 0.13       | 5                      | 6                     | 0.32       | 14                     | 6                     |
| W        | Т        | 0.09 | 3                      | 6                     | 0.13       | 5                      | 5                     | 0.13       | 5                      | 6                     | 0.32       | 14                     | 6                     |
|          | R        | 0.09 | 3                      | 9                     | 0.13       | 5                      | 9                     | 0.13       | 5                      | 9                     | 0.32       | 14                     | 10                    |



#### 4.5.4 Intersection 3: West Street / Wallis Street

The West Street / Wallis Street intersection modelled can be seen in Figure 4-5. Parking separates opposing lanes on all four approaches.

Figure 4-5: Intersection 3 (Existing Intersection Layout)



The results of SIDRA analysis for this intersection (seen in Table 4-7) indicate that the roundabout will operate well within acceptable limits for both peak periods, and with or without the proposed development.

While this intersection does carry a large amount of traffic to and from the development, it is expected to be exclusively through traffic along West Street, the major road of the intersection. The impact on the intersection's performance is barely noticeable.

Table 4-7: Intersection 3 Performance

|          |          |      | 2                      | 028 Bas               | e Volum    | es                     |                       | 2028 Design Volumes |                        |                       |            |                        |                       |  |
|----------|----------|------|------------------------|-----------------------|------------|------------------------|-----------------------|---------------------|------------------------|-----------------------|------------|------------------------|-----------------------|--|
| ach      | nent     | V    | /eekday Al             | M                     | Weekday PM |                        |                       | Weekday AM          |                        |                       | Weekday PM |                        |                       |  |
| Approach | Movement | DOS  | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS                 | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |  |
|          | L        | 0.12 | 4                      | 4                     | 0.09       | 3                      | 4                     | 0.16                | 6                      | 4                     | 0.17       | 7                      | 4                     |  |
| S        | Т        | 0.12 | 4                      | 5                     | 0.09       | 3                      | 5                     | 0.16                | 6                      | 5                     | 0.17       | 7                      | 5                     |  |
|          | R        | 0.12 | 4                      | 9                     | 0.09       | 3                      | 9                     | 0.16                | 6                      | 9                     | 0.17       | 7                      | 9                     |  |
|          | L        | 0.03 | 1                      | 4                     | 0.03       | 1                      | 5                     | 0.04                | 1                      | 5                     | 0.03       | 1                      | 6                     |  |
| Е        | Т        | 0.03 | 1                      | 5                     | 0.03       | 1                      | 5                     | 0.04                | 1                      | 5                     | 0.03       | 1                      | 6                     |  |
|          | R        | 0.03 | 1                      | 9                     | 0.03       | 1                      | 9                     | 0.04                | 1                      | 9                     | 0.03       | 1                      | 10                    |  |
|          | L        | 0.02 | 1                      | 4                     | 0.04       | 1                      | 5                     | 0.05                | 2                      | 4                     | 0.18       | 7                      | 5                     |  |
| N        | Т        | 0.02 | 1                      | 5                     | 0.04       | 1                      | 5                     | 0.05                | 2                      | 5                     | 0.18       | 7                      | 5                     |  |
|          | R        | 0.02 | 1                      | 9                     | 0.04       | 1                      | 9                     | 0.05                | 2                      | 9                     | 0.18       | 7                      | 9                     |  |



|          |       | 2028 Base Volumes |                        |                       |            |                        |                       | 2028 Design Volumes |                        |                       |            |                        |                       |
|----------|-------|-------------------|------------------------|-----------------------|------------|------------------------|-----------------------|---------------------|------------------------|-----------------------|------------|------------------------|-----------------------|
| ach      | nent  | V                 | /eekday Al             | M                     | Weekday PM |                        |                       | Weekday AM          |                        |                       | Weekday PM |                        |                       |
| Approach | Moven | DOS               | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS                 | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |
|          | L     | 0.03              | 1                      | 5                     | 0.08       | 3                      | 5                     | 0.03                | 1                      | 5                     | 0.09       | 3                      | 5                     |
| w        | Т     | 0.03              | 1                      | 5                     | 0.08       | 3                      | 5                     | 0.03                | 1                      | 5                     | 0.09       | 3                      | 6                     |
|          | R     | 0.03              | 1                      | 9                     | 0.08       | 3                      | 9                     | 0.03                | 1                      | 9                     | 0.09       | 3                      | 9                     |

#### 4.5.5 Intersection 4: Head Street / West Street

The Head Street / West Street intersection modelled can be seen in Figure 4-6. Parking separates opposing lanes on the north and south approaches. This intersection is the first of two in which the minor road only allows left-outs.

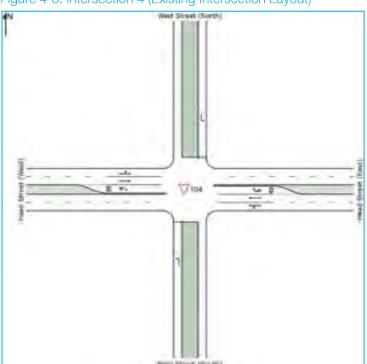
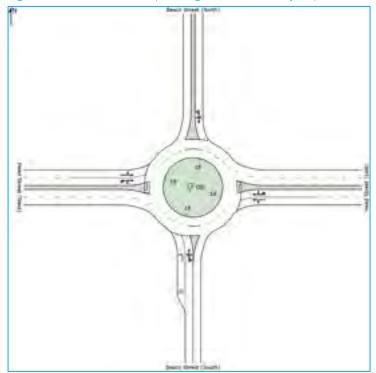



Figure 4-6: Intersection 4 (Existing Intersection Layout)

The results of SIDRA analysis for this intersection (seen in Table 4-8) indicate that it will operate well within acceptable limits for both peak periods, and with or without the proposed development.

This is another intersection in which only one or two movements are expected to carry new traffic generated by the development: the west approach right-turn and the south approach left-turn. Even though a high proportion of development-generated traffic may use these movements, the impact on the intersection performance is minor.




Table 4-8: Intersection 4 Performance

|          | ınt      |      | 2                      | 028 Bas               | e Volum    | es                     |                       | 2028 Design Volumes |                        |                       |            |                        |                       |  |
|----------|----------|------|------------------------|-----------------------|------------|------------------------|-----------------------|---------------------|------------------------|-----------------------|------------|------------------------|-----------------------|--|
| oach     | nent     | V    | /eekday Al             | M                     | Weekday PM |                        |                       | Weekday AM          |                        |                       | Weekday PM |                        |                       |  |
| Approach | Movement | DOS  | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS                 | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |  |
| S        | L        | 0.18 | 5                      | 8                     | 0.15       | 4                      | 8                     | 0.25                | 7                      | 9                     | 0.31       | 10                     | 9                     |  |
|          | L        | 0.26 | 0                      | 6                     | 0.25       | 0                      | 6                     | 0.26                | 0                      | 6                     | 0.25       | 0                      | 6                     |  |
| Е        | Т        | 0.26 | 0                      | 0                     | 0.25       | 0                      | 0                     | 0.26                | 0                      | 0                     | 0.25       | 0                      | 0                     |  |
|          | R        | 0.12 | 3                      | 14                    | 0.13       | 3                      | 13                    | 0.12                | 3                      | 14                    | 0.13       | 3                      | 13                    |  |
| N        | L        | 0.12 | 3                      | 8                     | 0.16       | 4                      | 8                     | 0.12                | 3                      | 8                     | 0.16       | 4                      | 8                     |  |
|          | L        | 0.28 | 0                      | 6                     | 0.26       | 0                      | 6                     | 0.28                | 0                      | 6                     | 0.26       | 0                      | 6                     |  |
| w        | Т        | 0.28 | 0                      | 0                     | 0.26       | 0                      | 0                     | 0.28                | 0                      | 0                     | 0.26       | 0                      | 0                     |  |
|          | R        | 0.05 | 1                      | 12                    | 0.07       | 2                      | 12                    | 0.15                | 4                      | 13                    | 0.47       | 16                     | 16                    |  |

### 4.5.6 Intersection 5: Head Street / Beach Street

The Head Street / Beach Street intersection modelled can be seen in Figure 4-7. Almost all traffic arriving in Forster must use this intersection, in combination with the bridge connection to Tuncurry.

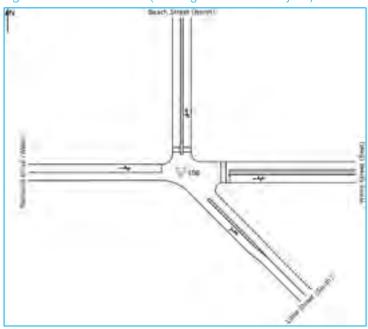
Figure 4-7: Intersection 5 (Existing Intersection Layout)



The results of SIDRA analysis for this intersection (seen in Table 4-9) indicate that it will operate well within acceptable limits for both peak periods, with or without the proposed development.



Table 4-9: Intersection 5 Performance


|          |          |      | 2                      | 028 Bas               | e Volum    | es                     |                       |            | 20                     | )28 Desi              | gn Volum   | ies                    |                       |
|----------|----------|------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|
| ach      | nent     | V    | /eekday Al             | M                     | Weekday PM |                        |                       | Weekday AM |                        |                       | Weekday PM |                        |                       |
| Approach | Movement | DOS  | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |
|          | L        | 0.34 | 12                     | 8                     | 0.39       | 14                     | 8                     | 0.41       | 16                     | 9                     | 0.56       | 25                     | 10                    |
| S        | Т        | 0.34 | 11                     | 8                     | 0.39       | 14                     | 9                     | 0.41       | 15                     | 9                     | 0.56       | 24                     | 11                    |
|          | R        | 0.34 | 11                     | 13                    | 0.39       | 14                     | 13                    | 0.41       | 15                     | 14                    | 0.56       | 24                     | 15                    |
|          | L        | 0.50 | 27                     | 6                     | 0.47       | 25                     | 7                     | 0.54       | 32                     | 7                     | 0.63       | 48                     | 10                    |
| Е        | Т        | 0.50 | 27                     | 7                     | 0.47       | 25                     | 7                     | 0.54       | 32                     | 7                     | 0.63       | 48                     | 11                    |
|          | R        | 0.50 | 26                     | 11                    | 0.47       | 24                     | 11                    | 0.54       | 32                     | 12                    | 0.63       | 46                     | 16                    |
|          | L        | 0.17 | 5                      | 9                     | 0.20       | 6                      | 8                     | 0.17       | 5                      | 9                     | 0.25       | 8                      | 10                    |
| N        | Т        | 0.17 | 5                      | 9                     | 0.20       | 6                      | 9                     | 0.17       | 5                      | 9                     | 0.25       | 8                      | 10                    |
|          | R        | 0.17 | 5                      | 13                    | 0.20       | 6                      | 13                    | 0.17       | 5                      | 13                    | 0.25       | 8                      | 15                    |
|          | L        | 0.46 | 28                     | 5                     | 0.46       | 28                     | 5                     | 0.49       | 30                     | 5                     | 0.59       | 43                     | 5                     |
| w        | Т        | 0.46 | 28                     | 5                     | 0.46       | 28                     | 5                     | 0.49       | 30                     | 5                     | 0.59       | 43                     | 5                     |
|          | R        | 0.46 | 27                     | 9                     | 0.46       | 27                     | 9                     | 0.49       | 29                     | 9                     | 0.59       | 42                     | 10                    |

This roundabout carries nearly all the expected development traffic. However, the intersection already carries close to 1000 vph along its busiest movements, meaning the impact experienced is minimised.

# 4.5.7 Intersection 6: Beach Street / Little Street / Wallis Street / Memorial Drive

The Head Street / Little Street / Wallis Street / Memorial Drive intersection modelled can be seen in Figure 4-8. Parking separates opposing lanes on the east approach.

Figure 4-8: Intersection 6 (Existing Intersection Layout)

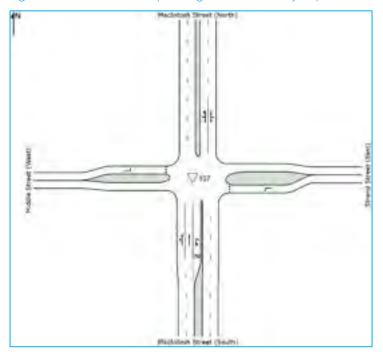




The results of SIDRA analysis for this intersection (seen in Table 4-10) indicate that it will operate well within acceptable limits for both 2028 AM and PM peak periods, and with or without the proposed development.

Again, a large portion of the development's traffic will use this intersection but a minimal impact will be felt as it would already be operating quite well in the 10-year horizon base scenario.

Table 4-10: Intersection 6 Performance


| Approach | Movement | 2028 Base Volumes |                        |                       |            |                        |                       | 2028 Design Volumes |                        |                       |            |                        |                       |
|----------|----------|-------------------|------------------------|-----------------------|------------|------------------------|-----------------------|---------------------|------------------------|-----------------------|------------|------------------------|-----------------------|
|          |          | Weekday AM        |                        |                       | Weekday PM |                        |                       | Weekday AM          |                        |                       | Weekday PM |                        |                       |
|          |          | DOS               | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS                 | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |
| S        | L        | 0.23              | 2                      | 6                     | 0.24       | 2                      | 6                     | 0.28                | 11                     | 6                     | 0.34       | 15                     | 6                     |
|          | Т        | 0.23              | 2                      | 0                     | 0.24       | 2                      | 0                     | 0.28                | 11                     | 5                     | 0.34       | 15                     | 5                     |
|          | R        | 0.23              | 2                      | 7                     | 0.24       | 2                      | 8                     | 0.28                | 11                     | 8                     | 0.34       | 15                     | 10                    |
| Е        | L        | 0.06              | 2                      | 7                     | 0.09       | 2                      | 7                     | 0.07                | 2                      | 8                     | 0.14       | 3                      | 9                     |
|          | Т        | 0.06              | 2                      | 9                     | 0.09       | 2                      | 10                    | 0.07                | 2                      | 10                    | 0.14       | 3                      | 15                    |
|          | R        | 0.06              | 2                      | 11                    | 0.09       | 2                      | 13                    | 0.07                | 2                      | 12                    | 0.14       | 3                      | 19                    |
| N        | L        | 0.21              | 2                      | 6                     | 0.24       | 2                      | 6                     | 0.23                | 2                      | 6                     | 0.33       | 2                      | 6                     |
|          | Т        | 0.21              | 2                      | 0                     | 0.24       | 2                      | 0                     | 0.23                | 2                      | 5                     | 0.33       | 2                      | 5                     |
|          | R        | 0.21              | 2                      | 7                     | 0.24       | 2                      | 8                     | 0.23                | 2                      | 6                     | 0.33       | 2                      | 6                     |
| W        | L        | 0.10              | 3                      | 7                     | 0.18       | 4                      | 7                     | 0.11                | 3                      | 7                     | 0.27       | 7                      | 8                     |
|          | Т        | 0.10              | 3                      | 9                     | 0.18       | 4                      | 10                    | 0.11                | 3                      | 10                    | 0.27       | 7                      | 16                    |
|          | R        | 0.10              | 3                      | 12                    | 0.18       | 4                      | 13                    | 0.11                | 3                      | 12                    | 0.27       | 7                      | 19                    |



### 4.5.8 Intersection 7: MacIntosh Street / Middle Street / Strand Street

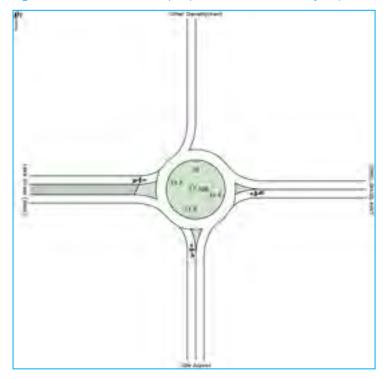
The MacIntosh Street / Middle Street / Strand Street intersection modelled can be seen in Figure 4-9. Parking separates opposing lanes on all four approaches. This intersection is the second of two in which the minor road only allows left-outs.

Figure 4-9: Intersection 7 (Existing Intersection Layout)



The results of SIDRA analysis for this intersection (seen in Table 4-11) indicate that it will operate well within acceptable limits for both peak periods, and with or without the proposed development. The right-turn from the south MacIntosh approach is the critical movement for this intersection.




Table 4-11: Intersection 7 Performance

|          |          | 2028 Base Volumes |                        |                       |            |                        |                       |            | 2028 Design Volumes    |                       |            |                        |                       |  |  |
|----------|----------|-------------------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|--|--|
| oach     | nent     | Weekday AM        |                        |                       | Weekday PM |                        |                       | Weekday AM |                        |                       | Weekday PM |                        |                       |  |  |
| Approach | Movement | DOS               | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |  |  |
|          | L        | 0.21              | 0                      | 6                     | 0.21       | 0                      | 6                     | 0.22       | 0                      | 6                     | 0.22       | 0                      | 6                     |  |  |
| S        | Т        | 0.21              | 0                      | 0                     | 0.21       | 0                      | 0                     | 0.22       | 0                      | 0                     | 0.22       | 0                      | 0                     |  |  |
|          | R        | 0.63              | 27                     | 20                    | 0.47       | 16                     | 17                    | 0.64       | 27                     | 20                    | 0.49       | 17                     | 18                    |  |  |
| Е        | L        | 0.20              | 6                      | 8                     | 0.27       | 8                      | 8                     | 0.21       | 6                      | 8                     | 0.28       | 8                      | 9                     |  |  |
|          | L        | 0.26              | 0                      | 6                     | 0.26       | 0                      | 6                     | 0.27       | 0                      | 6                     | 0.27       | 0                      | 6                     |  |  |
| N        | Т        | 0.26              | 1                      | 0                     | 0.26       | 1                      | 0                     | 0.27       | 1                      | 0                     | 0.27       | 1                      | 0                     |  |  |
|          | R        | 0.26              | 1                      | 13                    | 0.26       | 1                      | 13                    | 0.27       | 1                      | 13                    | 0.27       | 1                      | 13                    |  |  |
| W        | L        | 0.00              | 0                      | 7                     | 0.01       | 0                      | 7                     | 0.00       | 0                      | 7                     | 0.01       | 0                      | 7                     |  |  |

## 4.5.9 Intersection 8: Lake Street / Site Access 1

The Lake Street / Site Access 1 intersection modelled can be seen in Figure 4-10. The roundabout features a northern leg to accommodate the existing entrance into the Bella Villa Motor Inn. Ingress and egress from the inn is separated, with the exit from the same complex further to the west before the roundabout

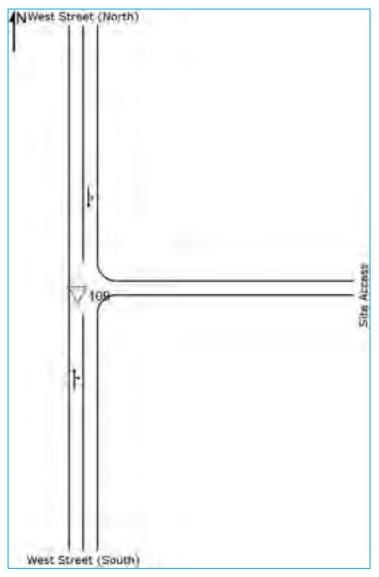
Figure 4-10: Intersection 8 (Proposed Intersection Layout)



SIDRA analysis (seen in Table 4-12) reveals that this site access intersection will operate within acceptable limits.



Table 4-12: Intersection 8 Performance


|          |          | 2028 Base Volumes |                        |                       |            |                        |                       |            | 2028 Design Volumes    |                       |            |                        |                       |  |  |
|----------|----------|-------------------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|------------|------------------------|-----------------------|--|--|
| ach      | nent     | Weekday AM        |                        |                       | Weekday PM |                        |                       | Weekday AM |                        |                       | Weekday PM |                        |                       |  |  |
| Approach | Movement | DOS               | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |  |  |
|          | L        | -                 | -                      | -                     | -          | -                      | -                     | 0.10       | 3                      | 6                     | 0.20       | 8                      | 5                     |  |  |
| S        | Т        | -                 | -                      | -                     | -          | -                      | -                     | 0.10       | 3                      | 6                     | 0.20       | 8                      | 6                     |  |  |
|          | R        | -                 | -                      | -                     | -          | -                      | -                     | 0.10       | 3                      | 10                    | 0.20       | 8                      | 9                     |  |  |
|          | L        | -                 | -                      | -                     | -          | -                      | -                     | 0.18       | 7                      | 5                     | 0.18       | 7                      | 6                     |  |  |
| Е        | Т        | -                 | -                      | -                     | -          | -                      | -                     | 0.18       | 7                      | 5                     | 0.18       | 7                      | 6                     |  |  |
|          | R        | -                 | -                      | -                     | -          | -                      | -                     | 0.18       | 7                      | 9                     | 0.18       | 7                      | 10                    |  |  |
|          | L        | -                 | -                      | -                     | -          | -                      | -                     | 0.13       | 5                      | 4                     | 0.33       | 16                     | 5                     |  |  |
| w        | Т        | -                 | -                      | -                     | -          | -                      | -                     | 0.13       | 5                      | 4                     | 0.33       | 16                     | 5                     |  |  |
|          | R        | -                 | -                      | -                     | -          | -                      | -                     | 0.13       | 5                      | 9                     | 0.33       | 16                     | 9                     |  |  |



### 4.5.10 Intersection 9: West Street / Site Access 2

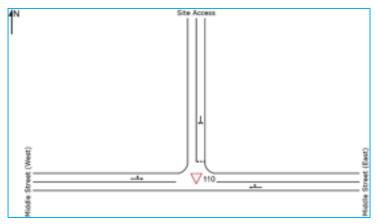
The Lake Street / Site Access 2 intersection modelled can be seen in Figure 4-11.

Figure 4-11: Intersection 9 (Proposed Intersection Layout)



SIDRA analysis (seen in Table 4-13) shows that this intersection will operate effectively, although this is to be expected. Queuing should only ever be experienced when vehicles are turning right from the southern approach as the site access is one-way (no egressing traffic).




Table 4-13: Intersection 9 Performance

|          |        | 2028 Base Volumes |                        |                       |            |                        |                       | 2028 Design Volumes |                        |                       |            |                        |                       |  |
|----------|--------|-------------------|------------------------|-----------------------|------------|------------------------|-----------------------|---------------------|------------------------|-----------------------|------------|------------------------|-----------------------|--|
| ach      | vement | V                 | /eekday Al             | M                     | Weekday PM |                        |                       | Weekday AM          |                        |                       | Weekday PM |                        |                       |  |
| Approach | Mover  | DOS               | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS                 | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |  |
| S        | Т      | 1                 | -                      | -                     | -          | -                      | -                     | 0.05                | 0                      | 0                     | 0.06       | 0                      | 0                     |  |
| 3        | R      | -                 | -                      | -                     | -          | -                      | -                     | 0.05                | 0                      | 6                     | 0.06       | 0                      | 6                     |  |
| N        | L      | ı                 | -                      | ı                     | ı          | ı                      | -                     | 0.03                | 0                      | 6                     | 0.08       | 0                      | 6                     |  |
| IN       | Т      | -                 | -                      | -                     | -          | -                      | -                     | 0.03                | 0                      | 0                     | 0.08       | 0                      | 0                     |  |

### 4.5.11 Intersection 10: Middle Street / Site Access 3

The Middle Street / Site Access 3 intersection modelled can be seen in Figure 4-12.

Figure 4-12: Intersection 10 (Proposed Intersection Layout)



The southern site access should operate well within acceptable limits (seen in Table 4-14) with the northern approach the only approach experiencing any significant queuing.

Table 4-14: Intersection 10 Performance

|          |          | 2028 Base Volumes |                        |                       |            |                        |                       | 2028 Design Volumes |                        |                       |            |                        |                       |  |
|----------|----------|-------------------|------------------------|-----------------------|------------|------------------------|-----------------------|---------------------|------------------------|-----------------------|------------|------------------------|-----------------------|--|
| ach      | nent     | Weekday AM        |                        |                       | Weekday PM |                        |                       | Weekday AM          |                        |                       | Weekday PM |                        |                       |  |
| Approach | Movement | DOS               | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS                 | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) | DOS        | 95%ile<br>Queue<br>(m) | Avg<br>Delay<br>(sec) |  |
| Е        | Т        | -                 | -                      | -                     | -          | -                      | -                     | 0.04                | 0                      | 0                     | 0.03       | 1                      | 0                     |  |
| -        | R        | -                 | -                      | -                     | -          | -                      | -                     | 0.04                | 0                      | 6                     | 0.03       | 1                      | 6                     |  |
| N        | L        | -                 | -                      | -                     | -          | -                      | -                     | 0.02                | 1                      | 6                     | 0.05       | 1                      | 6                     |  |
| l IN     | R        | -                 | -                      | -                     | -          | -                      | -                     | 0.02                | 1                      | 6                     | 0.05       | 1                      | 6                     |  |
| W        | L        | -                 | -                      | -                     | -          | -                      | -                     | 0.02                | 0                      | 6                     | 0.06       | 0                      | 6                     |  |
| "        | Т        | -                 | -                      | -                     | -          | -                      | -                     | 0.02                | 0                      | 0                     | 0.06       | 0                      | 0                     |  |



# 5. Summary of Findings

MRCagney has been commissioned by Eynoc Pty Ltd to undertake a traffic impact assessment for the proposed Mixed Use Development to be located on the corner of the intersection of Lake Street and West Street in Forster, NSW, also bounded by Middle Street.

The proposed development will include a library, community rooms, supermarket, cinema, childcare centre, residential units, services apartments and hotel, in addition to a range of ancillary retail, restaurant and gym tenancies. The development will be delivered over four stages with construction of stage 1 to be completed as soon as 2018/19. As such, the 10-year horizon for the whole development was allocated as 2028.

The following is a summary of the findings:

#### 1. Access

The proposed development will be located on the south-east corner of the Lake Street / West Street intersection located in Forster and is also bounded by Middle Street to the south. The primary access to the development will be provided via a roundabout on the north side of the development along Lake Street. A second access will be located on the south side of the development along Middle Street. A third ingress-only access point is on the west side of the development along West Street.

Residential traffic will be largely restricted to the Lake Street access with some traffic using West Street for ingress, while hotel traffic will mainly utilise the Middle Street access. Retail and other land usages will likely use a mix of the Lake Street and Middle Street accesses.

#### 2. Car Parking

A total of 513 car spaces will be provided, broken down across three buildings and four levels:

- Building A: Basement 1 / Lower Ground Level (252 spaces), Level 1 (17 spaces) and Level 2 (77 spaces);
- Building B: Level 1 (61 spaces) and Level 2 (64 spaces); and
- Building C: Basement 2 (42 spaces).

Temporal demand assessed that 12:00 noon on a typical weekend day will be peak parking period. During this time, only 221 spaces would be required of the 252 spaces provided in the retail parking level, meaning the parking provision would adequately meet the peak demands of the development.

#### 3. Car Park Layout

A dimension check of car parks, demonstrated that all three car park areas (residential, retail and hotel) are compliant with (or exceed) the standards set out in AS2890.1:2004 and the relevant state policies.

Internal ramps and circulation aisles for two-way movement are required to have a minimum width of 5.5m; all instances in this development are compliant. Parking aisles have differing requirements based on user class (usually 5.8m); again, all instances in this development meet their respective minimum.

Swept path analysis undertaken shows there is adequate space for manoeuvring in all locations.

#### 4. Servicing

The Great Lakes Development Control Plan doesn't appear to offer guidance regarding servicing, however the development has been designed for manoeuvring of:

- A 19.0m Articulated Vehicle (AV) for retail usages, specifically the supermarket;
- A 12.5m Heavy Rigid Vehicle (HRV) for the residential / hotel usages; and



• A 6.4m Small Rigid Vehicle (SRV) and 5.37m Van for the retail / food outlets.

Provision has also been made for a Refuse Collection Vehicle (RCV).

#### 5. External Road Network Impact

The 10-year planning horizon for the development is 2028.

The conservatively (high side) peak hour trip generation of the proposed development, during the AM and PM road peak periods adopted for assessment of the external road network was:

- AM peak hour: 103 vph IN + 124 vph OUT = 227 vph; and
- PM peak hour: 419 vph IN + 279 vph OUT = 698 vph.

Even with the addition of traffic generated by the development to the base volumes for 2028, all intersections will operate satisfactorily.

The results of SIDRA analyses, included in Section 4 of this report, illustrate that:

- by 2028, all intersections will operate within acceptable limits in both the base and design scenarios;
- All new access intersections for the development will operate satisfactorily; and

Therefore, no external road network improvements, other than the works proposed along the Lake, West and Middle street frontages of the subject site, are required to ensure satisfactory operation of all intersections.

In summary, based on the findings of this assessment, provided the recommendations included in this report are implemented, there appears to be no traffic engineering reason to preclude this development from proceeding.



# Appendix A

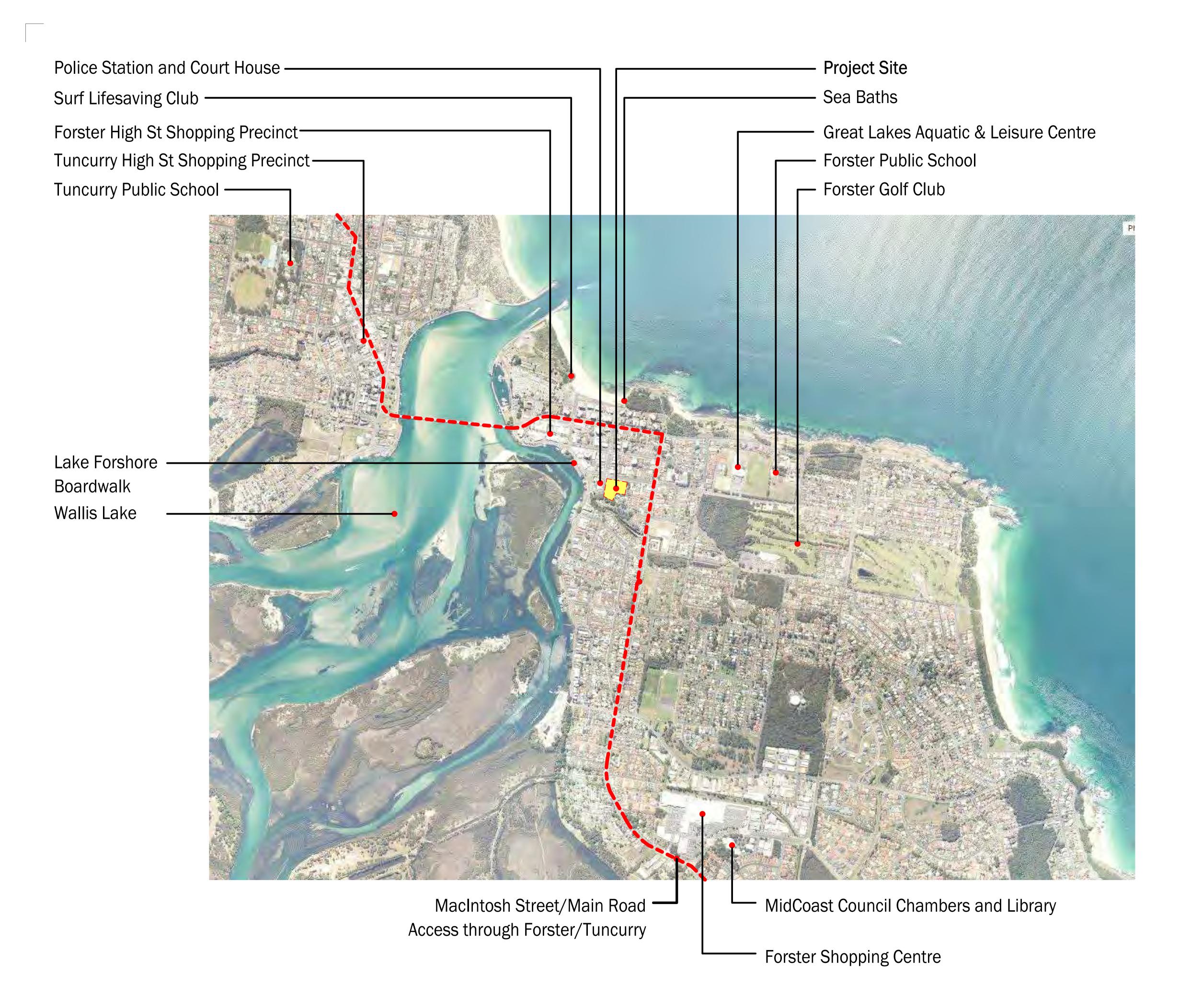
**Architectural Plans** 

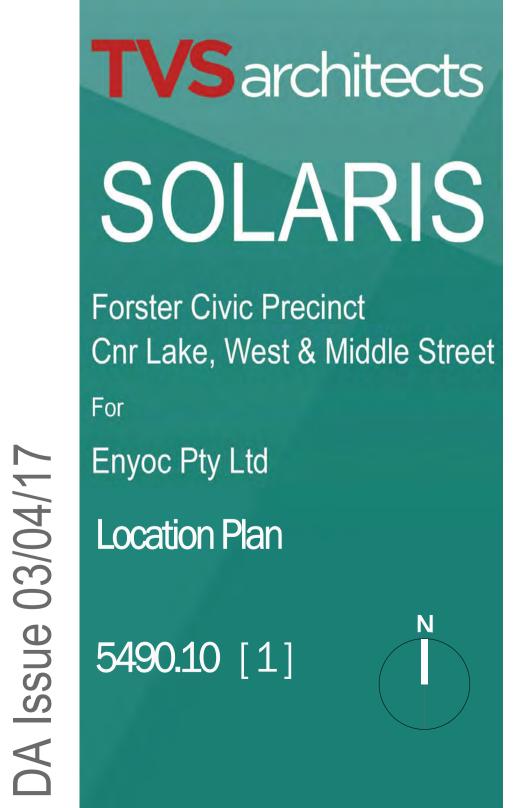




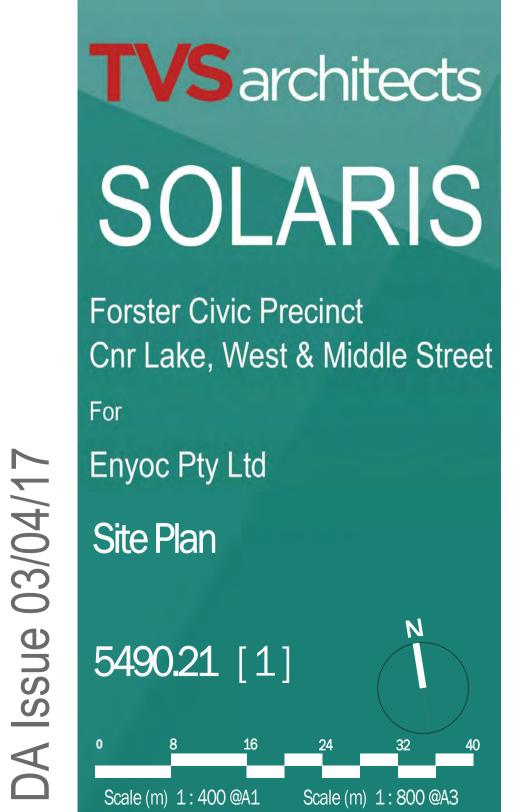
Renders are preliminary only

Forster Civic Precinct Cnr Lake, West & Middle Street


For


Enyoc Pty Ltd

Perspective Views


5490.02 [1]

DA Issue 03/04/17









Usage & Area Schedule

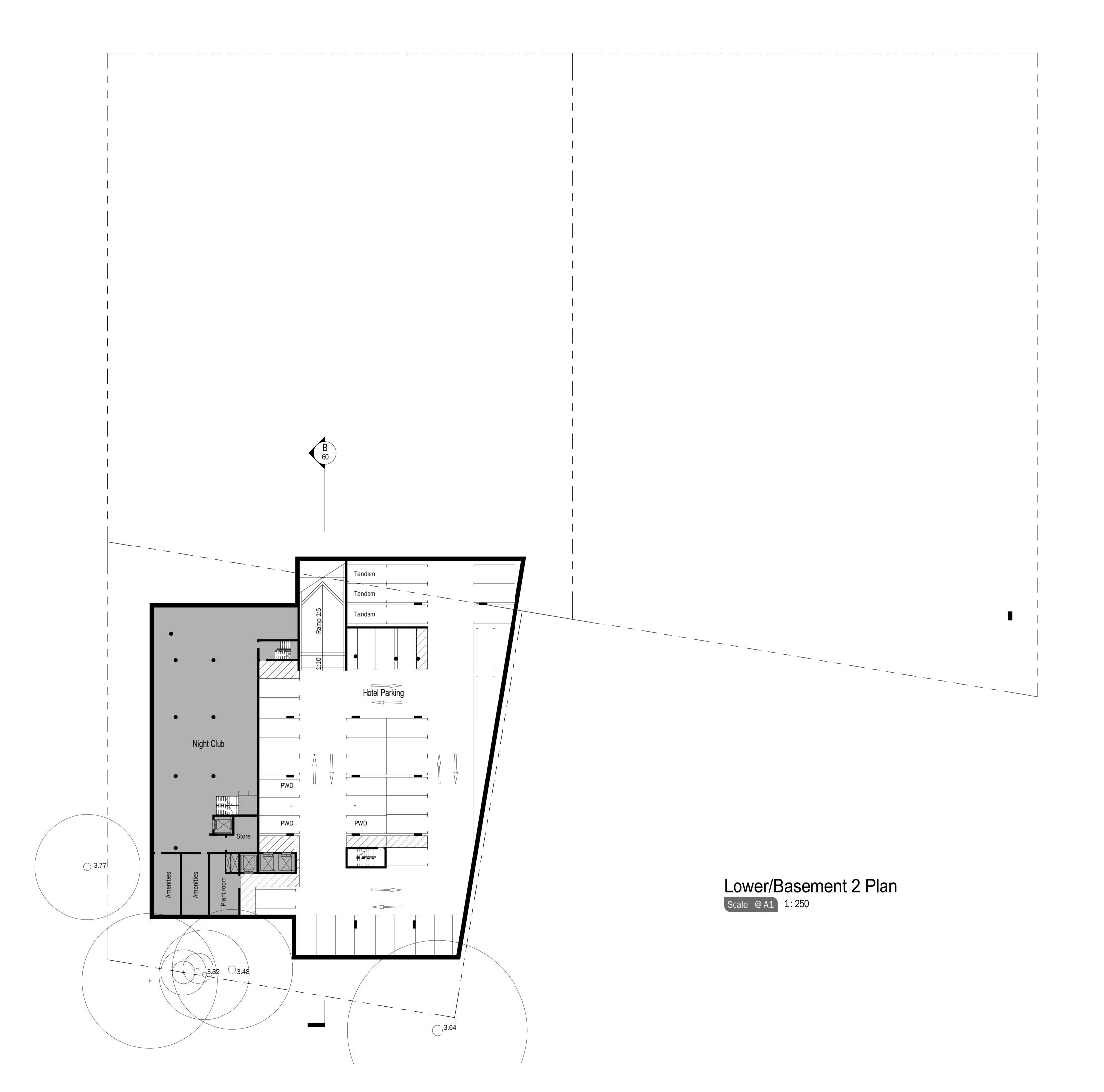
|       | Uses                                                                                                               | Areas                |        |                                             |                                             |      |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------|----------------------|--------|---------------------------------------------|---------------------------------------------|------|--|--|
|       |                                                                                                                    | Council Brie         | ef     | Provided                                    |                                             |      |  |  |
|       | Common Building Facilities/ Community Centre                                                                       | Total m²             | 875.6  |                                             |                                             | 89   |  |  |
|       | Library                                                                                                            | Total m <sup>2</sup> | 1712   |                                             |                                             | 175  |  |  |
|       | Visitor Centre                                                                                                     | Total m <sup>2</sup> | 350    |                                             |                                             | 36   |  |  |
|       | Sub total GFA m <sup>2</sup>                                                                                       |                      | 2937.6 |                                             |                                             | 300  |  |  |
|       |                                                                                                                    | Number of uni        | ts     | No. Units with<br>Ventilation<br>Compliance | No. Units with 3 hrs<br>Daylight Compliance |      |  |  |
| k     | 1 Bed Units<br>1A.1 x 5 @ 77.4m <sup>2</sup>                                                                       | 5                    |        | 5                                           | 0                                           | 38   |  |  |
| e 1   | 2 Bed Units<br>2A.1 x 24 @ 107m <sup>2</sup><br>2F.1 x 1 @ 107.7m <sup>2</sup>                                     | 25                   |        | 25                                          | 20                                          | 267  |  |  |
| Stage | 3 Bed Units<br>3A.1 x 12 @ 126.3m <sup>2</sup><br>3A.2 x 5 @ 124.6m <sup>2</sup><br>3B.1 x 6 @ 131.7m <sup>2</sup> | 23                   |        | 23                                          | 23                                          | 292  |  |  |
|       | Total no. Stage 1 Units                                                                                            | 53                   |        | 53                                          | 43                                          |      |  |  |
|       | Corridors/ Lobbies (enclosed)                                                                                      |                      | U      |                                             |                                             | 54   |  |  |
|       | Ground Amenities                                                                                                   |                      | - 4    |                                             |                                             | 3    |  |  |
|       | Ground Residential Office                                                                                          |                      |        |                                             |                                             |      |  |  |
|       | Ground Staff Bike Enclosure<br>& PWD Shower                                                                        |                      |        |                                             |                                             |      |  |  |
|       | Ground Restaurant/ Cafés                                                                                           |                      |        |                                             |                                             | 40   |  |  |
|       | Level 1 Resident's Club (enclosed)                                                                                 |                      |        |                                             |                                             | 35   |  |  |
|       | Stage 1 Sub total GFA m <sup>2</sup>                                                                               |                      | - 1    |                                             |                                             | 741  |  |  |
|       | 2 Bed Units<br>2A.1 x 19 @ 107m <sup>2</sup><br>2A.2 x 9 @ 109.8m <sup>2</sup>                                     | 28                   |        | 28                                          | 24                                          | 302  |  |  |
|       | 3 Bed Units<br>3C.1 x 15 @ 123.7m <sup>2</sup><br>3D.1 x 14 @ 125.4                                                | 29                   |        | 29                                          | 29                                          | 361  |  |  |
|       | 4 Bed Penthouse Units<br>1 x @ 456.3m²                                                                             | 1                    |        | 1                                           | ì                                           | 45   |  |  |
| e 2   | 5 Bed Penthouse Units<br>1 x @ 499.9m²                                                                             | 1                    |        | 1                                           | 1                                           | 50   |  |  |
| Stag  | Total no. Stage 2 Units                                                                                            | 59                   | - 1    | 59                                          | 55                                          |      |  |  |
| St    | Corridors/ Lobbies (enclosed)                                                                                      |                      |        |                                             |                                             | 86   |  |  |
|       | Ground Amenities                                                                                                   |                      |        |                                             |                                             |      |  |  |
|       | Ground Supermarket                                                                                                 |                      |        |                                             |                                             | 84   |  |  |
|       | Ground Retail                                                                                                      |                      |        |                                             |                                             |      |  |  |
|       | Ground Gym                                                                                                         |                      |        |                                             |                                             | 20   |  |  |
|       | Ground Restaurants/ Cafes                                                                                          |                      |        |                                             |                                             | 3    |  |  |
|       | Level 5 Resident's Recreational Facilities (enclosed)                                                              |                      |        |                                             |                                             | 5    |  |  |
|       | Level 6 Resident's Amenities/<br>Sauna (enclosed)                                                                  |                      |        |                                             |                                             |      |  |  |
|       | Stage 2 Sub total GFA m <sup>2</sup>                                                                               |                      | -      |                                             |                                             | 1058 |  |  |

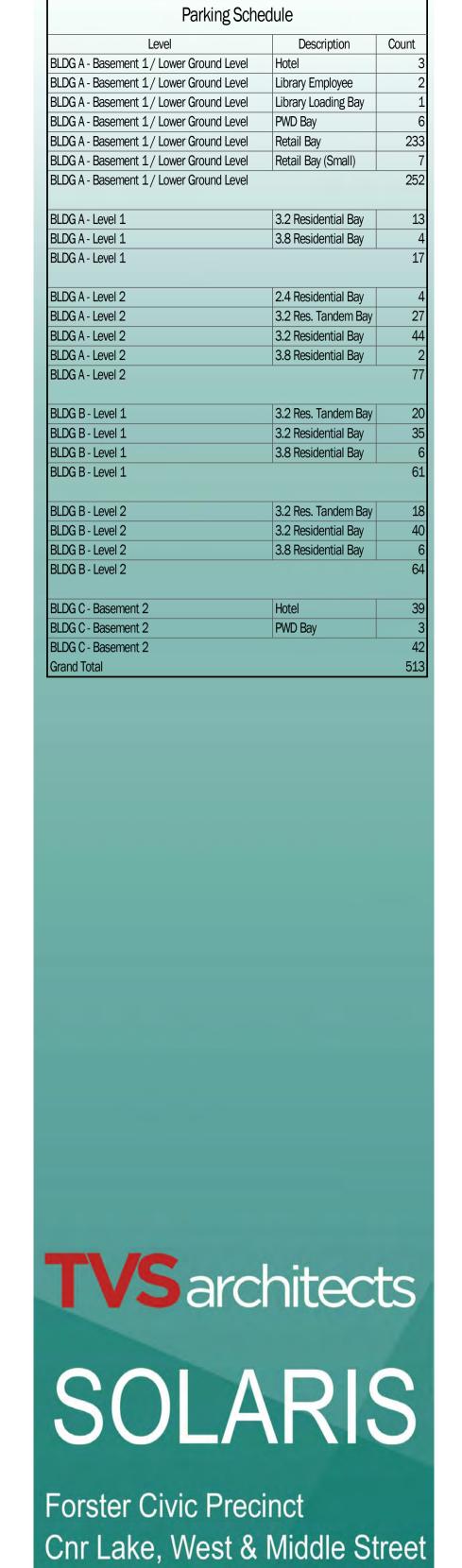
|          | Uses                                                                                                                                                      |     | GFA m <sup>2</sup> |   |      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|---|------|
|          | 2 Bed Units<br>2A.1 x 5@ 107m <sup>2</sup><br>2A.2 x 5@ 109.8m <sup>2</sup><br>2A.3 x 9@ 112.6m <sup>2</sup>                                              | 19  | 9                  | 2 | 2097 |
| , e 3    | 3B.2 x 10@ 124.6m <sup>2</sup>                                                                                                                            | 10  | 10                 | 0 | 1869 |
| stage    | 3 Bed Penthouse Units<br>2 x @ 318.4m <sup>2</sup>                                                                                                        | 2   | 2                  | 2 | 43   |
|          | Total no. Stage 3 Units                                                                                                                                   | 31  | 21                 | 4 |      |
|          | Total no. Units (Stages1,2,3)                                                                                                                             | 143 |                    |   |      |
|          | Corridors/ Lobbies (enclosed)                                                                                                                             |     |                    |   | 30   |
|          | Ground/ Level 3 / 4 Cinema                                                                                                                                |     |                    |   | 214  |
|          | Stage 3 Sub total GFA m <sup>2</sup>                                                                                                                      |     |                    |   | 685  |
|          | Hotel Room Type 0A.1<br>@ 43.2m <sup>2</sup>                                                                                                              | 68  |                    |   | 293  |
|          | Hotel Room Type 0B.1<br>@38.7m <sup>2</sup>                                                                                                               | 4   |                    |   | 15   |
| <u>.</u> | Hotel Room Type 0C.1<br>@ 41.5m <sup>2</sup>                                                                                                              | 4   |                    |   | 16   |
| eveloper | Hotel Room Type 0D.1<br>@ 34.2m²                                                                                                                          | 8   |                    |   | 27   |
| Deve     | 1 Bed Serviced Apartment<br>18.1 x 9 @ 64.5m <sup>2</sup><br>1C.1x 1 @ 60.9m <sup>2</sup><br>1D.1x 1 @ 59.3m <sup>2</sup><br>1E.1x 1 @ 85.8m <sup>2</sup> | 12  |                    |   | 78   |
| Stage 4  | 2D 1 v 1 @ 87 6m²                                                                                                                                         | 6   |                    |   | 55   |
| l s      | Total no. Hotel Rooms                                                                                                                                     | 102 |                    |   |      |
|          | Corridors (enclosed)                                                                                                                                      |     |                    |   | 69   |
|          | Basement 1 Hotel Back of House                                                                                                                            |     |                    |   | 35   |
|          | Basement 1 Hotel Lobby                                                                                                                                    |     |                    |   | 12   |
|          | Ground Childcare (including outdoor play)                                                                                                                 |     |                    |   | 38   |
|          | Ground Retail                                                                                                                                             |     |                    |   | 19   |
|          | Ground/ Basement 1 / 2 Night Club                                                                                                                         |     |                    |   | 81   |
|          | Ground Hotel Bussiness Centre                                                                                                                             |     |                    |   | 8    |
|          | Level 1 Restaurant/ Kitchen                                                                                                                               |     |                    |   | 46   |
|          | Level 1 Amenities                                                                                                                                         |     |                    |   | 5    |
|          | Level 1 Function Rooms/ Lounge                                                                                                                            |     |                    |   | 46   |
|          | Level 1 Terrace Dining /Bar                                                                                                                               |     |                    |   | 16   |
|          | Stage 4 Sub total GFA m <sup>2</sup>                                                                                                                      |     |                    |   | 868  |
|          | Total GFA m <sup>2</sup>                                                                                                                                  |     |                    |   | 3654 |

| Site Area:  | 12153.4 |
|-------------|---------|
| Total GFA:  | 36541   |
| Plot Ratio: | 3.007   |

TVS architects
SOLARIS

Forster Civic Precinct
Cnr Lake, West & Middle Street


For


Enyoc Pty Ltd

Development Statistics

5490.09 [1]

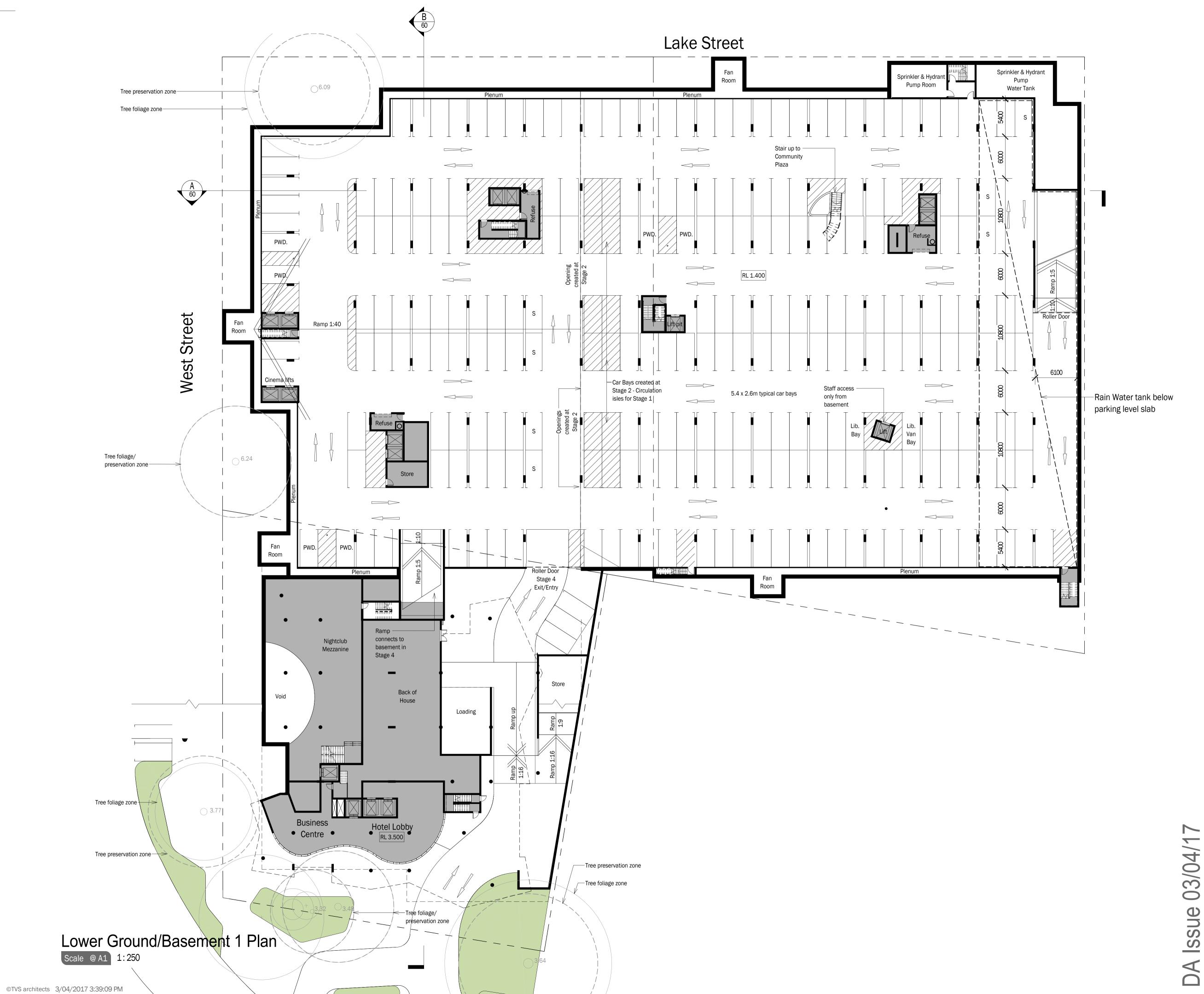
DA Issue 03/04/17





or Dtv I td

Enyoc Pty Ltd


Lower Basement 2 Plan

5490.22 [1]

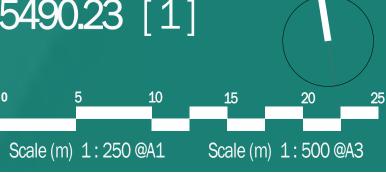
5 10 15 20 25

Scale (m) 1: 250 @A1 Scale (m) 1: 500 @A3

DA Issue 03/04/17






**TVS** architects SOLARIS

Forster Civic Precinct Cnr Lake, West & Middle Street

Enyoc Pty Ltd

Upper Basement 1 Plan

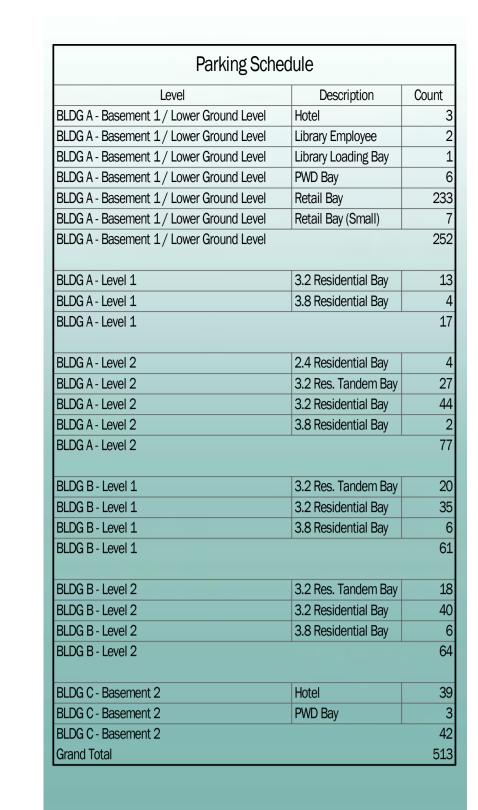
5490.23 [1]





Street Parking Schedule

Bicycle Parking Schedule Count


**TVS** architects SOLARIS

Forster Civic Precinct Cnr Lake, West & Middle Street

Enyoc Pty Ltd

Ground Floor Plan

5490.24 [1] Scale (m) 1:250 @A1 Scale (m) 1:500 @A3



TVS architects
SOLARIS

Forster Civic Precinct
Cnr Lake, West & Middle Street

For

Enyoc Pty Ltd

Level 1 Floor Plan

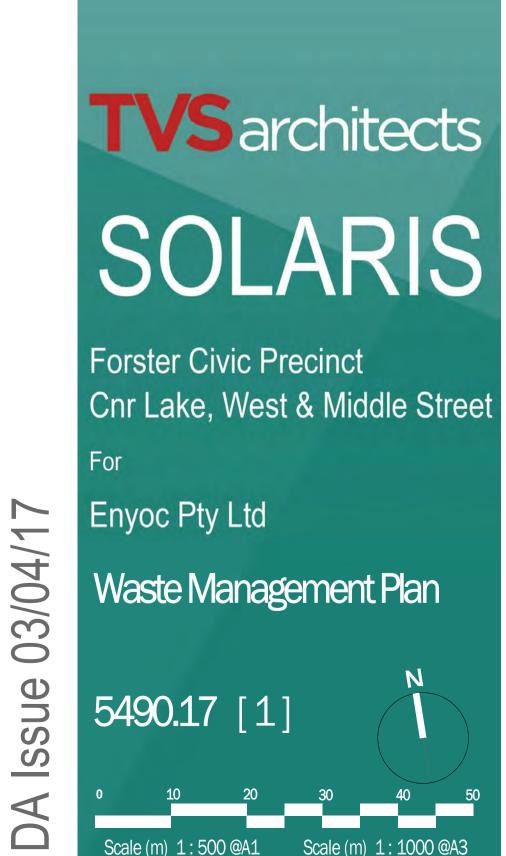
5490.25 [1]

5 10 15 20 25

Scale (m) 1: 250 @A1 Scale (m) 1: 500 @A3

DA Issue 03/04/17

Middle Street


**TVS** architects SOLARIS Forster Civic Precinct Cnr Lake, West & Middle Street Enyoc Pty Ltd Issue 03/04/17 Level 2 Floor Plan 5490.26 [1] DA Scale (m) 1:250 @A1 Scale (m) 1:500 @A3

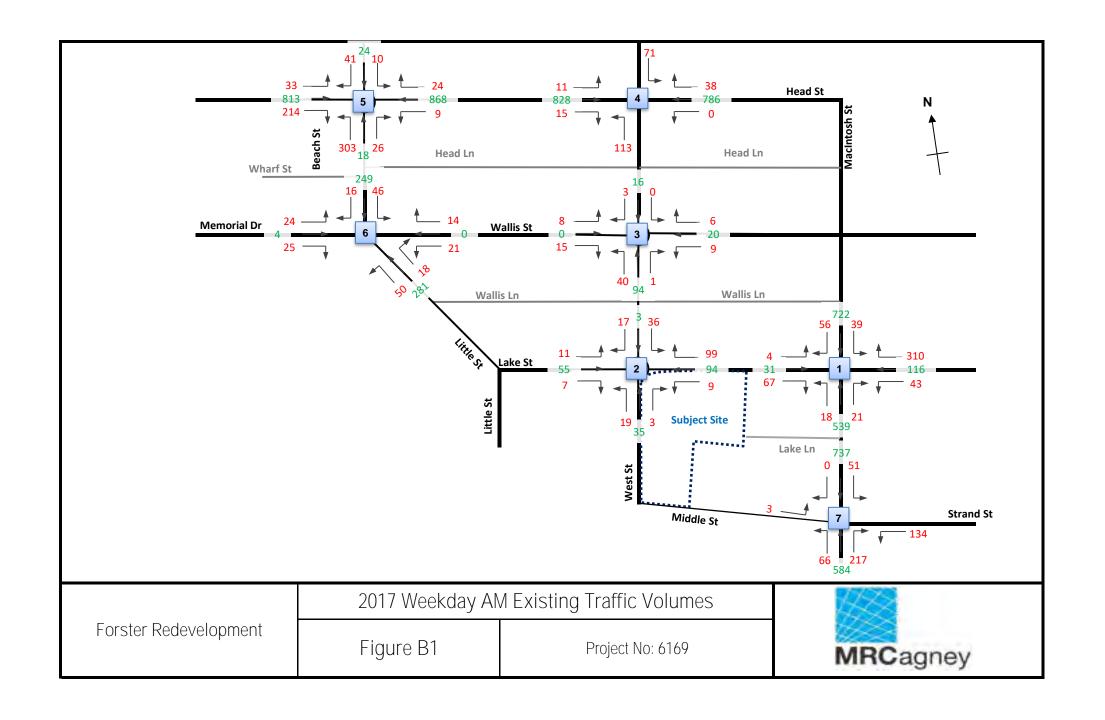


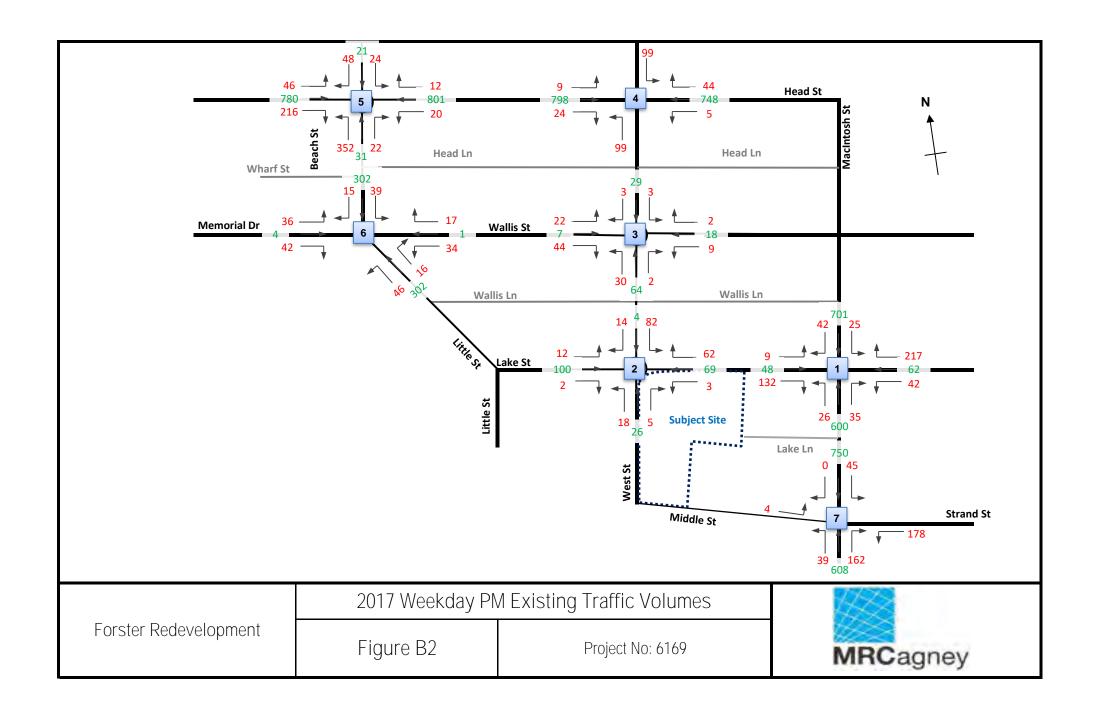
Typical Tower Refuse

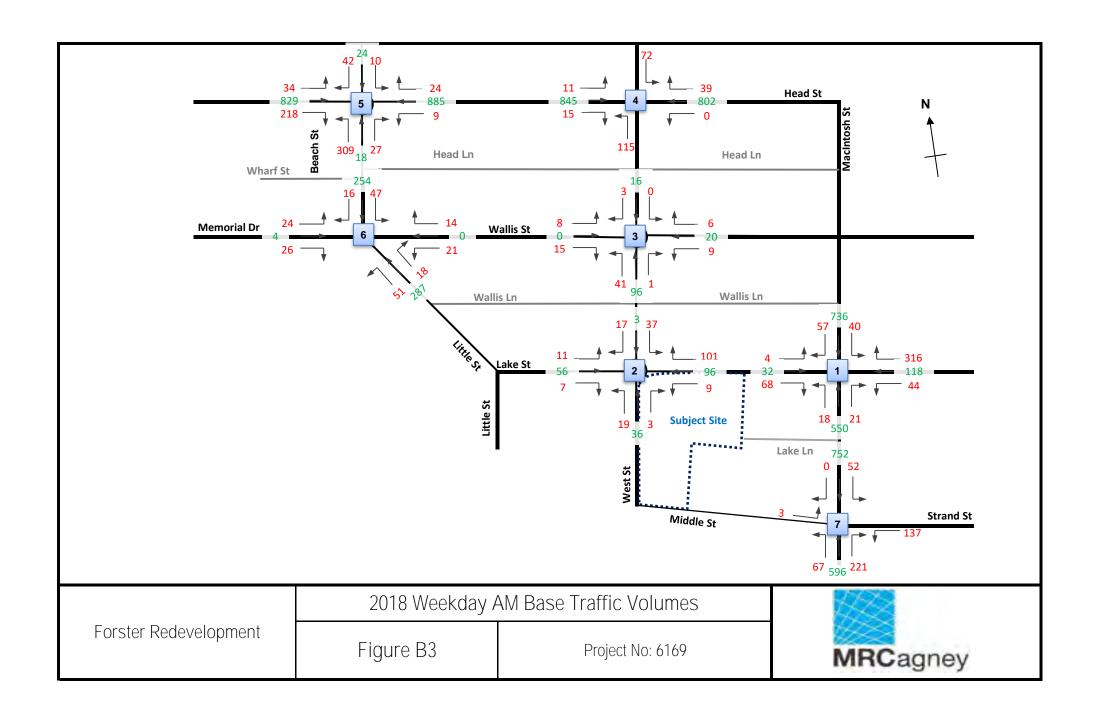
Scale @ A1 1:500

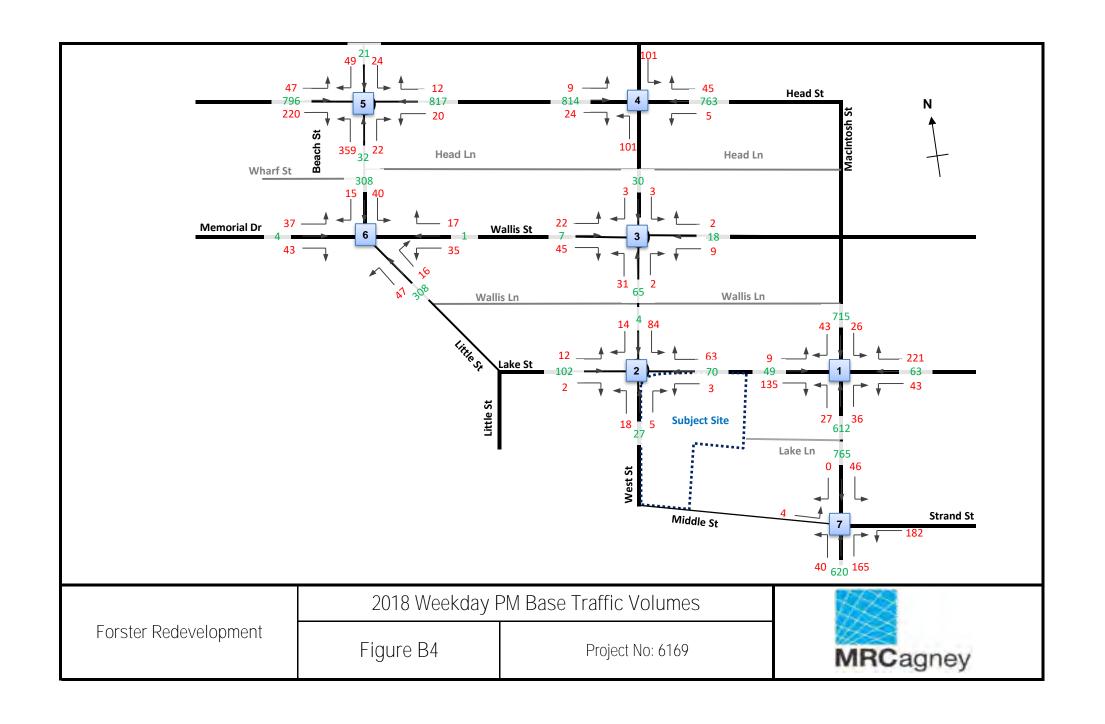
Middle Street

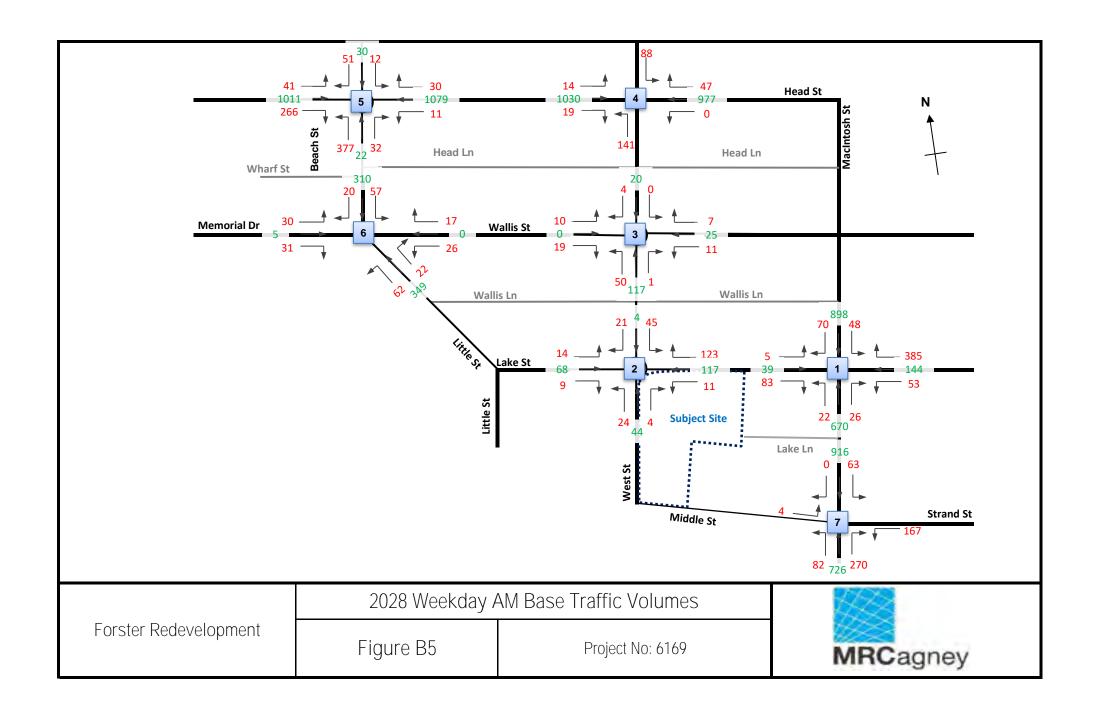


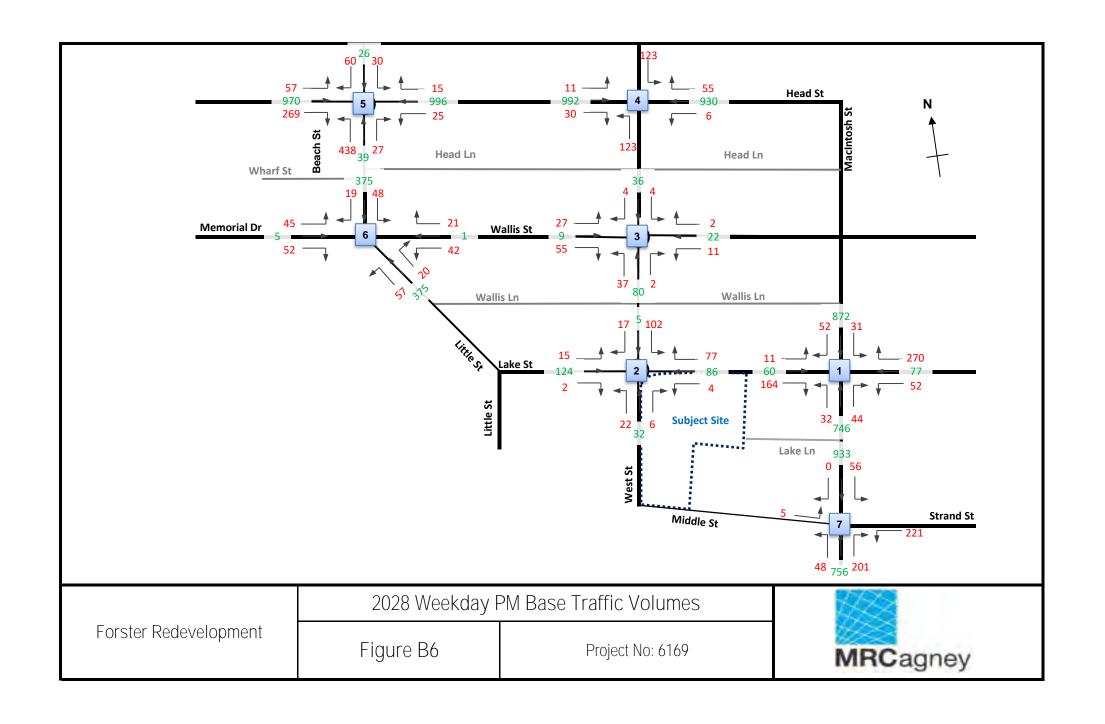

Scale (m) 1:500 @A1 Scale (m) 1:1000 @A3

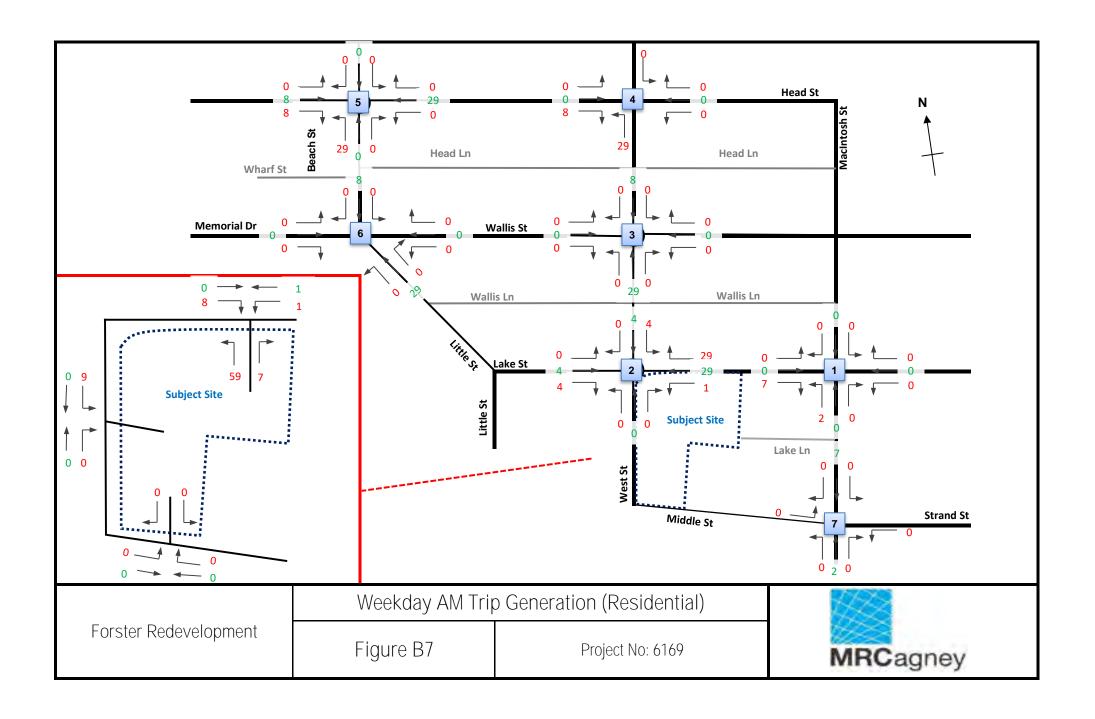

# Appendix B

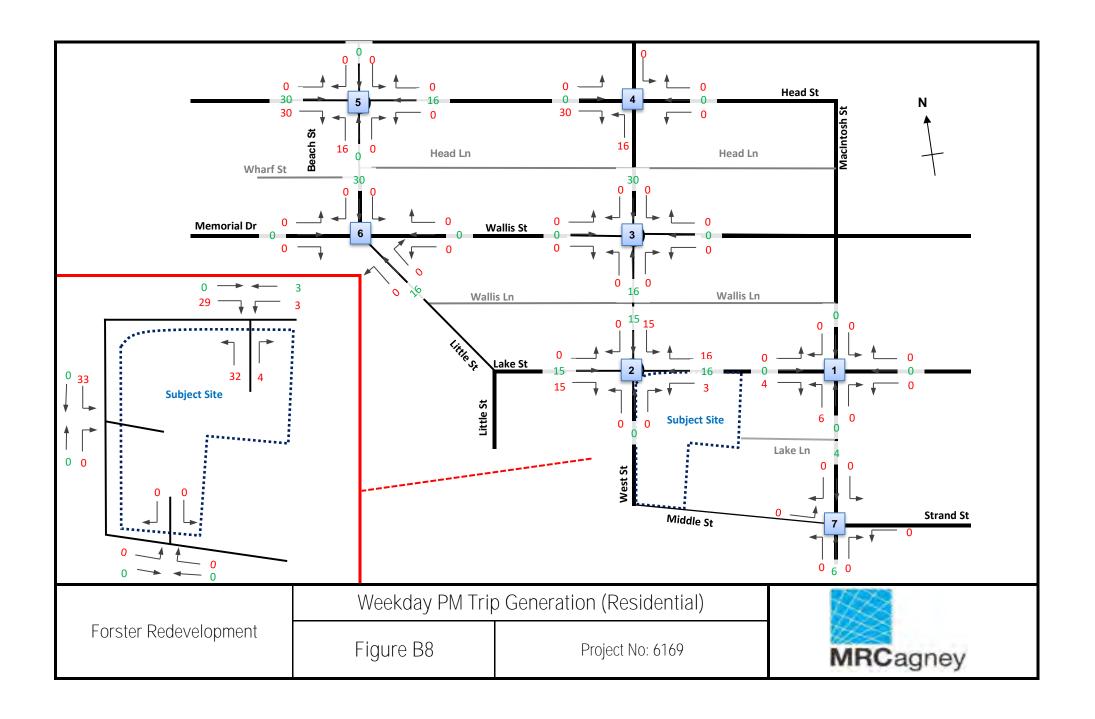

# Traffic Volume Diagrams and Data

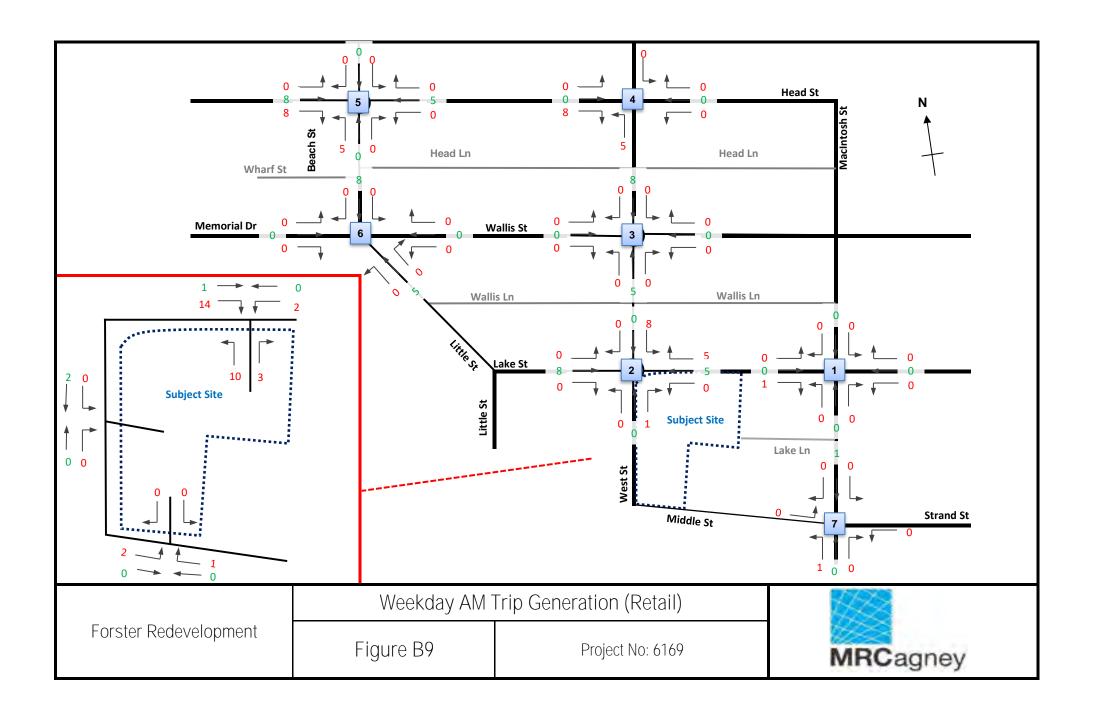

| Figure B1  | 2017 Weekday AM Observed Traffic Volumes |
|------------|------------------------------------------|
| Figure B2  | 2017 Weekday PM Observed Traffic Volumes |
| Figure B3  | 2018 Weekday AM Base Traffic Volumes     |
| Figure B4  | 2018 Weekday PM Base Traffic Volumes     |
| Figure B5  | 2028 Weekday AM Base Traffic Volumes     |
| Figure B6  | 2028 Weekday PM Base Traffic Volumes     |
| Figure B7  | Weekday AM Trip Generation (Residential) |
| Figure B8  | Weekday PM Trip Generation (Residential) |
| Figure B9  | Weekday AM Trip Generation (Retail)      |
| Figure B10 | Weekday PM Trip Generation (Retail)      |
| Figure B11 | Weekday AM Trip Generation (Hotel)       |
| Figure B12 | Weekday PM Trip Generation (Hotel)       |
| Figure B13 | Weekday AM Trip Generation (Other)       |
| Figure B14 | Weekday PM Trip Generation (Other)       |
| Figure B15 |                                          |
| Figure B16 |                                          |
| Figure B17 | 2018 Weekday AM Design Traffic Volumes   |
| Figure B18 | 2018 Weekday PM Design Traffic Volumes   |
| Figure B19 | 2028 Weekday AM Design Traffic Volumes   |
| Figure B20 | 2028 Weekday PM Design Traffic Volumes   |

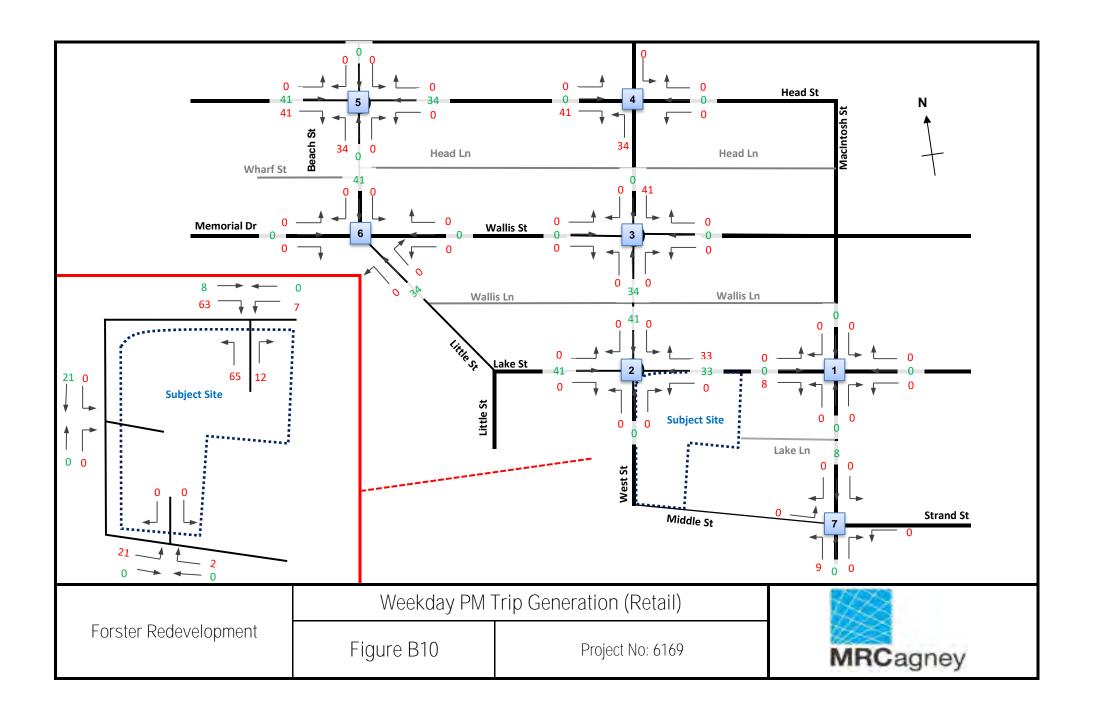


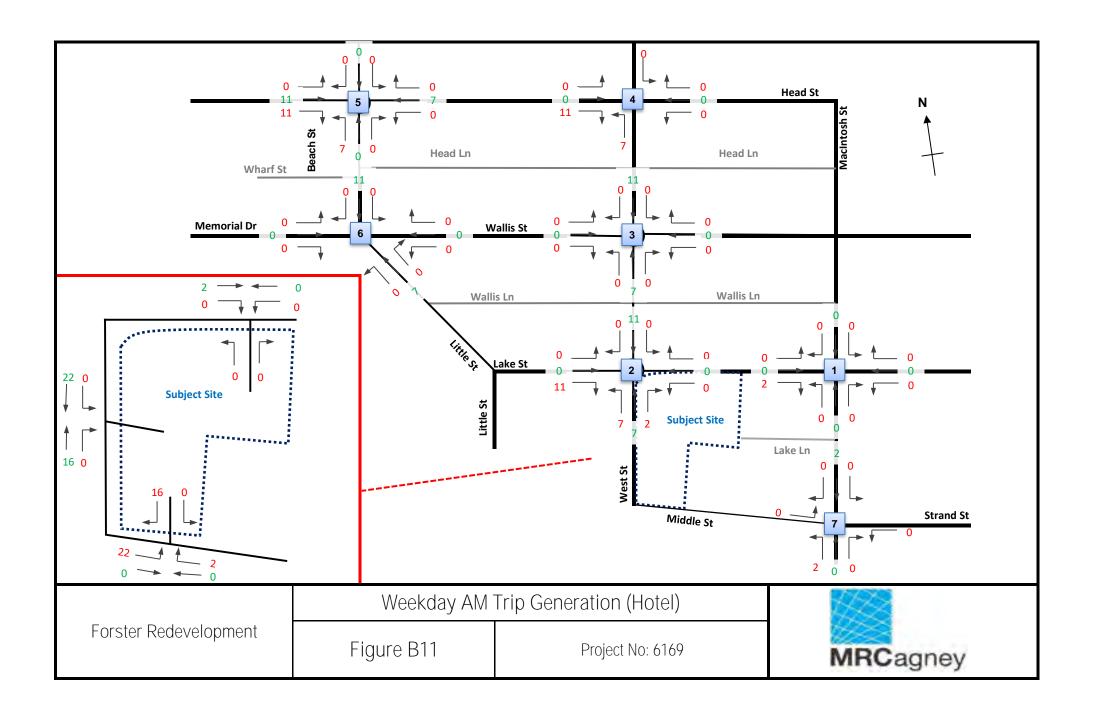



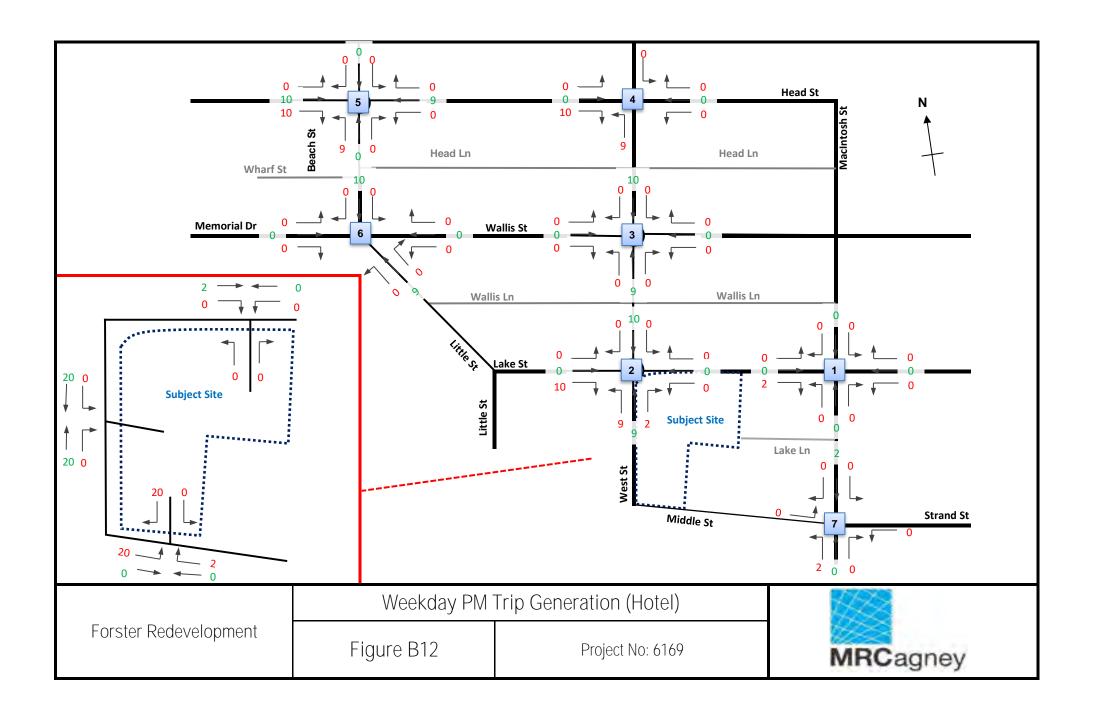



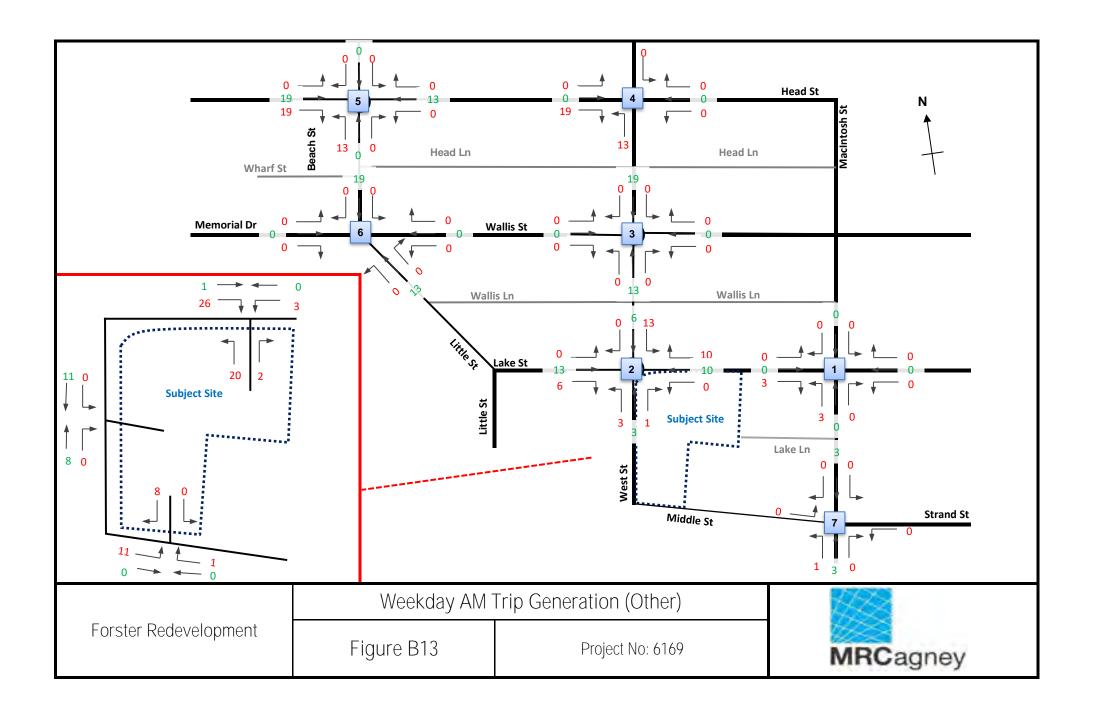



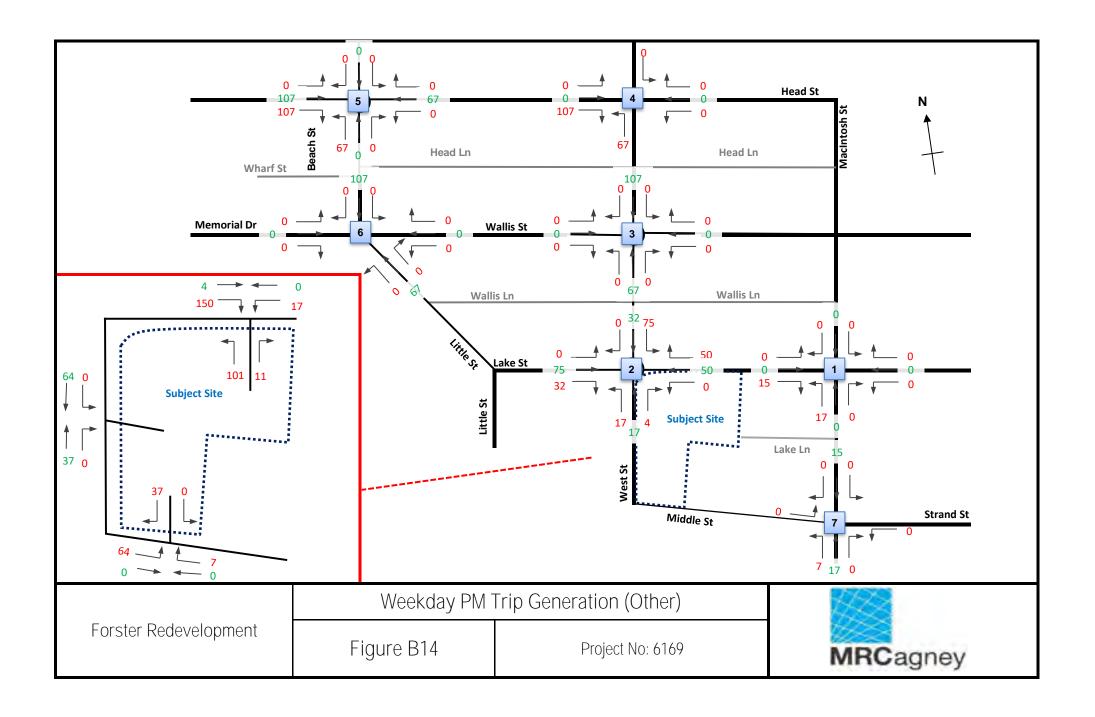



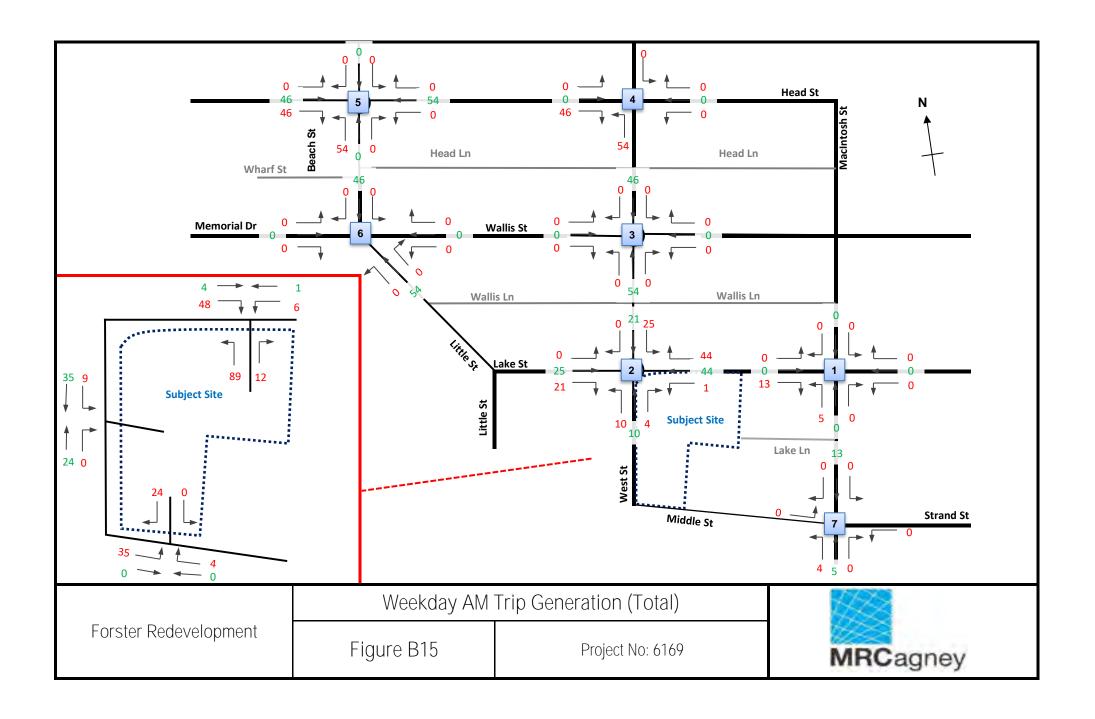



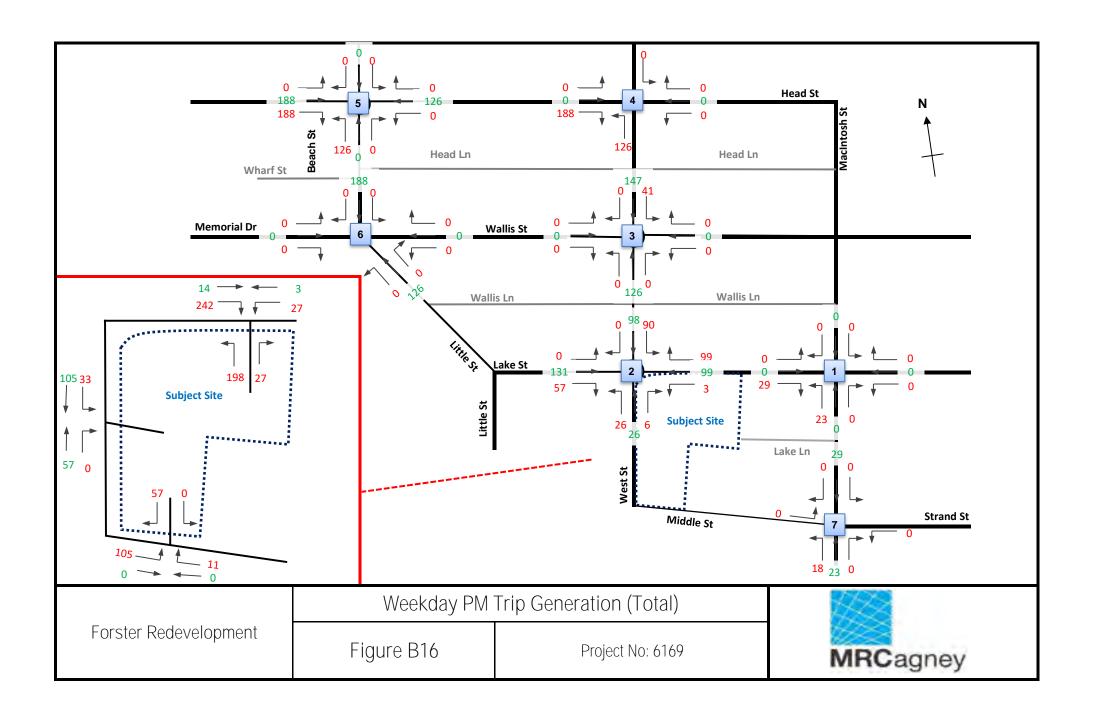



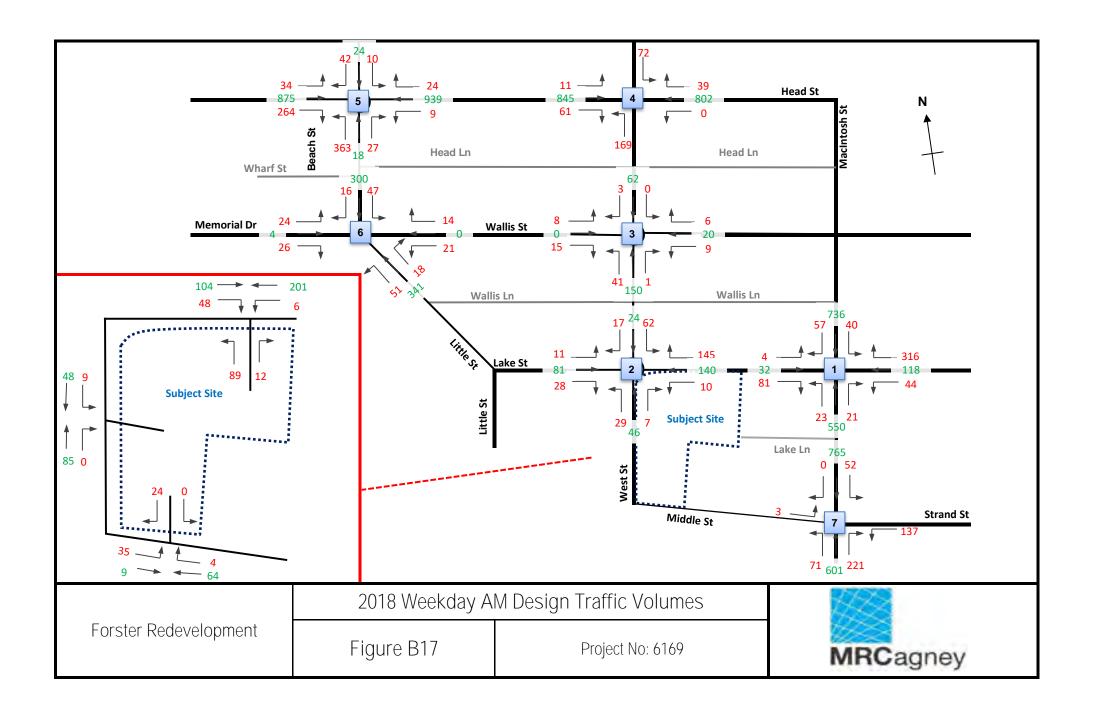



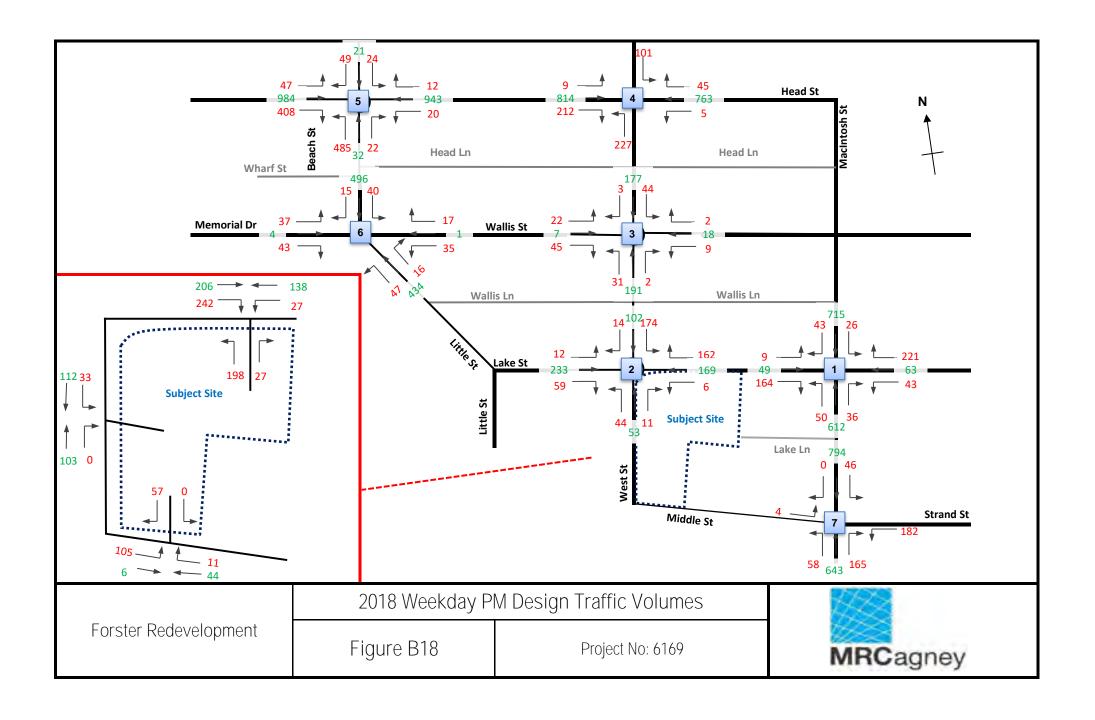



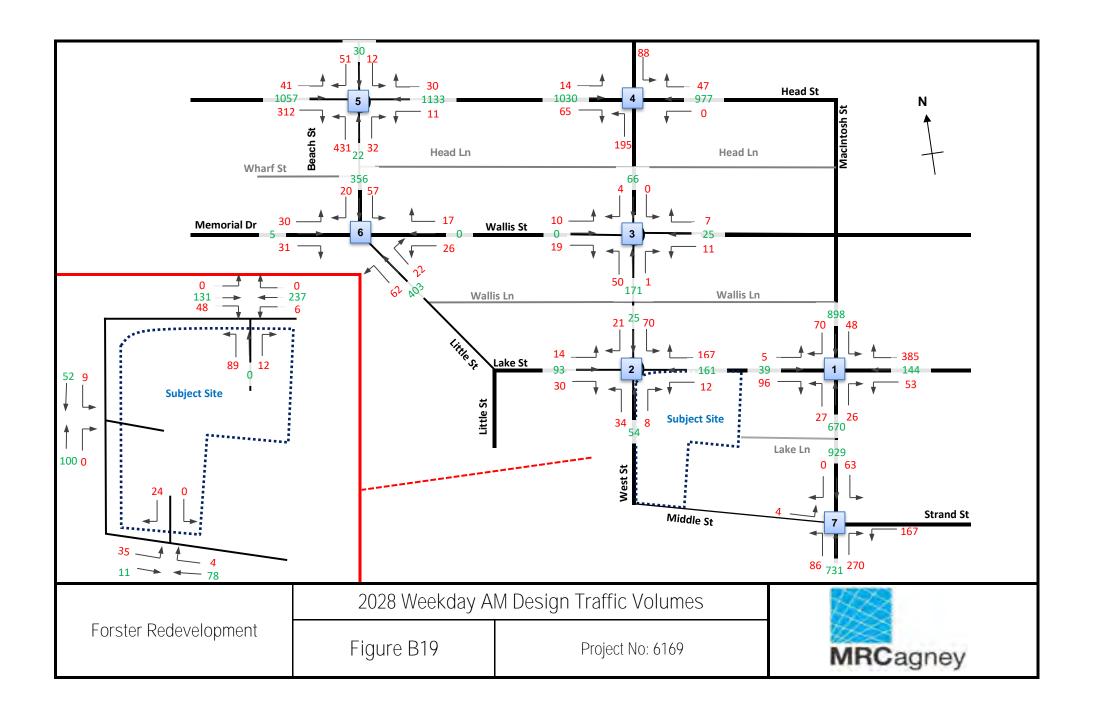



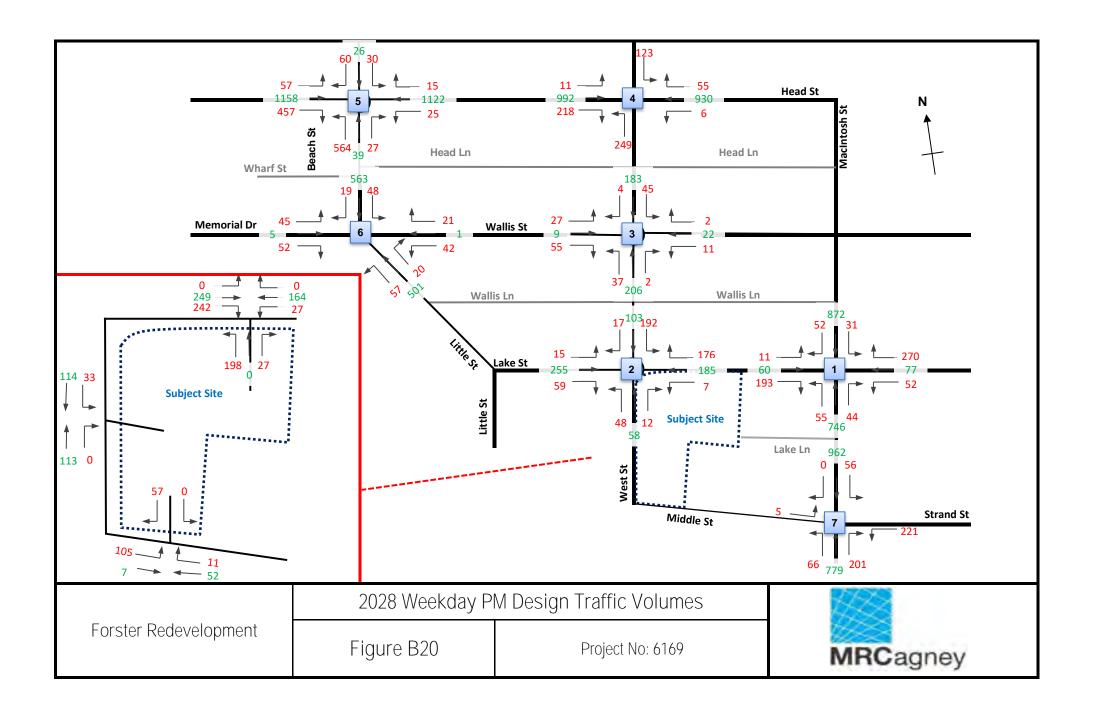



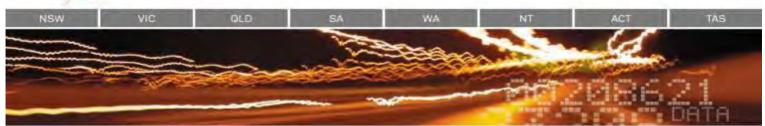











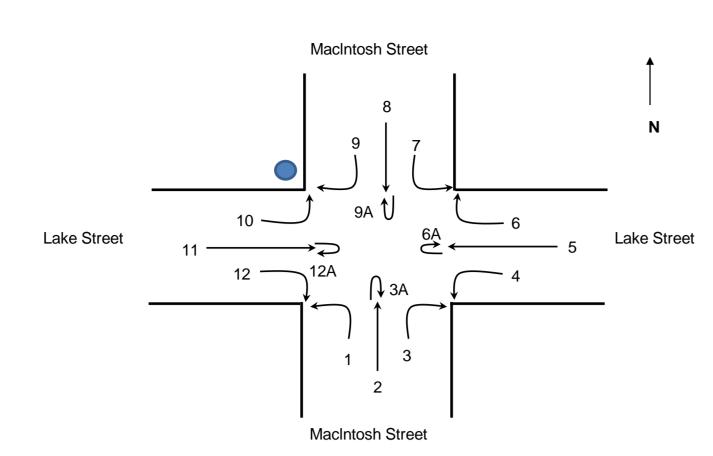

# Appendix C

Traffic Survey Data








## **Forster Traffic Counts**

Thursday, 2 March 2017

| JOB NUMBER       | 7755                                                           |
|------------------|----------------------------------------------------------------|
| JOB NAME         | Forster Traffic Counts                                         |
| CLIENT           | MRCagney                                                       |
| SURVEY LOCATIONS | Lake Street & MacIntosh Street                                 |
|                  | 2. Lake Street & West Street                                   |
|                  | 3. West Street & Wallis Street                                 |
|                  | 4. West Street & Head Street                                   |
|                  | 5. Head Street & Beach Street                                  |
|                  | 6. Beach Street, Little Street, Wallis Street & Memorial Drive |
| SURVEY TYPE      | Intersection Count                                             |
| SURVEY DATE      | Thursday, 2 March 2017                                         |
| SURVEY PERIOD    | 07:30 AM - 09:30 AM<br>02:30 PM - 04:30 PM                     |
| WEATHER          | Fine                                                           |

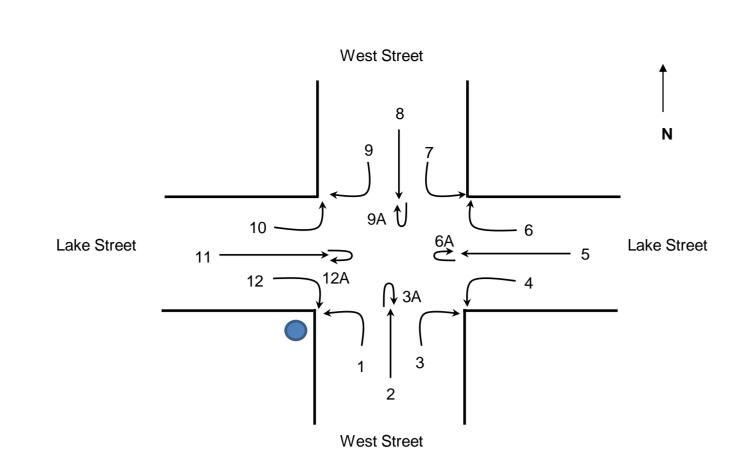


: MRCagney: ForsterTraffic Counts: Thursday, 02 March 2017: Lake Street & MacIntosh Street





| AM          |       |        |         |      |         |      |        |        |       |        |       |          |       |       |         |       |         |          |       |       |          |       |       |           |       |       |         |       |       |          |       |       |          |       |       |          |       |       |          |       |       |           |       |       |            |       |       |           |       |                           |              |           |
|-------------|-------|--------|---------|------|---------|------|--------|--------|-------|--------|-------|----------|-------|-------|---------|-------|---------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|------------|-------|-------|-----------|-------|---------------------------|--------------|-----------|
| Time        |       | Moveme | ent 1   |      | Movemer | nt 2 |        | Moveme | ent 3 |        | Mov   | vement 3 | 3A    | N     | ovement | 4     | Mov     | vement 5 | 5     | Мо    | vement 6 | 5     | M     | ovement 6 | SA S  | М     | ovement | 7     | IV    | lovement | 8     | М     | lovement | t 9   | N     | lovement | t 9A  |       | Movement | 10    | M     | ovement 1 | 11    | Me    | lovement 1 | 12    | Мо    | vement 12 | 2A    |                           |              |           |
| Period      | Light | Heavy  | y Total | Ligh | t Heavy | Tota | I Ligh | t Heav | у То  | otal L | ight. | Heavy    | Total | Light | Heavy   | Total | Light I | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy      | Total | Light | Heavy     | Total | Total of all<br>Movements | Peak Hour Vo | lume<br>n |
| 7:30 - 7:45 | 2     | 0      | 2       | 90   | 5       | 95   | 1      | 0      |       | 1      | 0     | 0        | 0     | 2     | 0       | 2     | 11      | 0        | 11    | 32    | 2        | 34    | 0     | 0         | 0     | 5     | 0       | 5     | 70    | 12       | 82    | 1     | 1        | 2     | 0     | 0        | 0     | 0     | 0        | 0     | 5     | 0         | 5     | 9     | 0          | 9     | 0     | 0         | 0     | 248                       | 7:30 - 8:30  | 1433      |
| 7:45 - 8:00 | 2     | 0      | 2       | 94   | 6       | 100  | 3      | 0      |       | 3      | 0     | 0        | 0     | 4     | 0       | 4     | 19      | 1        | 20    | 71    | 1        | 72    | 0     | 0         | 0     | 4     | 3       | 7     | 108   | 4        | 112   | 5     | 0        | 5     | 0     | 0        | 0     | 1     | 0        | 1     | 5     | 0         | 5     | 10    | 1          | 11    | 0     | 0         | 0     | 342                       | 7:45 - 8:45  | 1686      |
| 8:00 - 8:15 | 3     | 0      | 3       | 120  | 5       | 125  | 4      | 0      | •     | 4      | 0     | 0        | 0     | 3     | 0       | 3     | 20      | 0        | 20    | 74    | 1        | 75    | 0     | 0         | 0     | 4     | 0       | 4     | 99    | 11       | 110   | 6     | 1        | 7     | 0     | 0        | 0     | 2     | 0        | 2     | 4     | 0         | 4     | 9     | 0          | 9     | 0     | 0         | 0     | 366                       | 8:00 - 9:00  | 1876      |
| 8:15 - 8:30 | 5     | 0      | 5       | 153  | 4       | 157  | 1      | 1      |       | 2      | 0     | 0        | 0     | 9     | 1       | 10    | 24      | 0        | 24    | 69    | 2        | 71    | 0     | 0         | 0     | 8     | 2       | 10    | 162   | 8        | 170   | 10    | 0        | 10    | 0     | 0        | 0     | 0     | 0        | 0     | 10    | 0         | 10    | 8     | 0          | 8     | 0     | 0         | 0     | 477                       | 8:15 - 9:15  | 1966      |
| 8:30 - 8:45 | 5     | 0      | 5       | 124  | 5       | 129  | 9      | 0      |       | 9      | 0     | 0        | 0     | 8     | 0       | 8     | 27      | 0        | 27    | 84    | 1        | 85    | 0     | 0         | 0     | 12    | 2       | 14    | 178   | 8        | 186   | 19    | 0        | 19    | 0     | 0        | 0     | 2     | 0        | 2     | 5     | 0         | 5     | 12    | 0          | 12    | 0     | 0         | 0     | 501                       | 8:30 - 9:30  | 1882      |
| 8:45 - 9:00 | 4     | 0      | 4       | 147  | 4       | 151  | 7      | 2      |       | 9      | 0     | 0        | 0     | 14    | 1       | 15    | 37      | 0        | 37    | 80    | 1        | 81    | 0     | 0         | 0     | 10    | 1       | 11    | 164   | 13       | 177   | 17    | 0        | 17    | 0     | 0        | 0     | 1     | 0        | 1     | 9     | 0         | 9     | 19    | 1          | 20    | 0     | 0         | 0     | 532                       | AM Peak      | 1966      |
| 9:00 - 9:15 | 4     | 0      | 4       | 98   | 4       | 102  | 1      | 0      |       | 1      | 0     | 0        | 0     | 10    | 0       | 10    | 27      | 1        | 28    | 73    | 0        | 73    | 0     | 0         | 0     | 4     | 0       | 4     | 180   | 9        | 189   | 10    | 0        | 10    | 0     | 0        | 0     | 1     | 0        | 1     | 7     | 0         | 7     | 27    | 0          | 27    | 0     | 0         | 0     | 456                       |              |           |
| 9:15 - 9:30 | 10    | 0      | 10      | 103  | 8       | 111  | 3      | 1      |       | 4      | 0     | 0        | 0     | 8     | 0       | 8     | 13      | 0        | 13    | 37    | 2        | 39    | 0     | 0         | 0     | 5     | 0       | 5     | 169   | 3        | 172   | 5     | 0        | 5     | 0     | 0        | 0     | 0     | 0        | 0     | 10    | 0         | 10    | 15    | 1          | 16    | 0     | 0         | 0     | 393                       |              |           |
| Total       | 35    | 0      | 35      | 929  | 41      | 970  | 29     | 4      | 3     | 33     | 0     | 0        | 0     | 58    | 2       | 60    | 178     | 2        | 180   | 520   | 10       | 530   | 0     | 0         | 0     | 52    | 8       | 60    | 1130  | 68       | 1198  | 73    | 2        | 75    | 0     | 0        | 0     | 7     | 0        | 7     | 55    | 0         | 55    | 109   | 3          | 112   | 0     | 0         | 0     | 3315                      |              |           |
| AM Peak     | 18    | 0      | 18      | 522  | 17      | 539  | 18     | 3      | 2     | 21     | 0     | 0        | 0     | 41    | 2       | 43    | 115     | 1        | 116   | 306   | 4        | 310   | 0     | 0         | 0     | 34    | 5       | 39    | 684   | 38       | 722   | 56    | 0        | 56    | 0     | 0        | 0     | 4     | 0        | 4     | 31    | 0         | 31    | 66    | 1          | 67    | 0     | 0         | 0     | 1966                      |              |           |


| Time               | Mov     | vement 1 |       | M     | lovemen | 2     | N     | lovement | 3     | M     | lovement | 3A    | N     | lovement | 4     | M     | ovement ( | 5     | Мо    | vement | 6     | Mov   | vement 6 | Α     | Mov     | ement 7 |       | Move     | ment 8   |        | Movemen  | t 9   | Mov   | ement 9A | Α     | Мо    | vement 1 | 10    | М     | lovement | 11    | М     | /lovement | t 12  | M     | ovement | 12A |                           |            |
|--------------------|---------|----------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|--------|-------|-------|----------|-------|---------|---------|-------|----------|----------|--------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|---------|-----|---------------------------|------------|
| eriod              | Light H | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy  | Total | Light | Heavy    | Total | Light H | eavy T  | Total | Light He | avy Tota | al Lig | ht Heavy | Total | Light | leavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy   |     | Total of all<br>Movements |            |
| 30 - 14:4 <b>5</b> | 8       | 0        | 8     | 151   | 2       | 153   | 11    | 0        | 11    | 0     | 0        | 0     | 3     | 1        | 4     | 13    | 1         | 14    | 44    | 2      | 46    | 0     | 0        | 0     | 3       | 0       | 3     | 129      | 3 132    | ? 6    | 0        | 6     | 0     | 0        | 0     | 3     | 0        | 3     | 13    | 0        | 13    | 22    | 1         | 23    | 0     | 0       | 0   | 416                       | 14:30 - 15 |
| 5 - 15:00          | 4       | 1        | 5     | 123   | 11      | 134   | 12    | 1        | 13    | 0     | 0        | 0     | 6     | 0        | 6     | 16    | 2         | 18    | 45    | 2      | 47    | 0     | 0        | 0     | 4       | 0       | 4     | 164      | 3 172    | ? 7    | 0        | 7     | 0     | 0        | 0     | 1     | 0        | 1     | 11    | 0        | 11    | 39    | 1         | 40    | 0     | 0       | 0   | 458                       | 14:45 - 15 |
| - 15:15            | 6       | 0        | 6     | 153   | 4       | 157   | 5     | 1        | 6     | 0     | 0        | 0     | 24    | 0        | 24    | 16    | 0         | 16    | 62    | 4      | 66    | 0     | 0        | 0     | 5       | 3       | 8     | 177      | 181      | 1      | 0        | 17    | 0     | 0        | 0     | 4     | 0        | 4     | 14    | 0        | 14    | 30    | 0         | 30    | 0     | 0       | 0   | 529                       | 15:00 - 16 |
| 5 - 15:30          | 6       | 0        | 6     | 151   | 4       | 155   | 9     | 1        | 10    | 0     | 0        | 0     | 8     | 0        | 8     | 19    | 0         | 19    | 47    | 1      | 48    | 0     | 0        | 0     | 4       | 6       | 10    | 162      | 3 165    | 5 8    | 1        | 9     | 0     | 0        | 0     | 2     | 0        | 2     | 11    | 0        | 11    | 26    | 0         | 26    | 0     | 0       | 0   | 469                       | 15:15 - 16 |
| - 15:45            | 9       | 0        | 9     | 150   | 4       | 154   | 6     | 0        | 6     | 0     | 0        | 0     | 4     | 0        | 4     | 9     | 0         | 9     | 56    | 0      | 56    | 0     | 0        | 0     | 3       | 0       | 3     | 172      | 1 183    | 9      | 0        | 9     | 0     | 0        | 0     | 2     | 0        | 2     | 12    | 0        | 12    | 35    | 1         | 36    | 0     | 0       | 0   | 483                       | 15:30 - 16 |
| - 16:00            | 8       | 0        | 8     | 127   | 8       | 135   | 4     | 1        | 5     | 0     | 0        | 0     | 0     | 0        | 0     | 11    | 0         | 11    | 37    | 0      | 37    | 0     | 0        | 0     | 3       | 0       | 3     | 140      | 3 143    | 3 2    | 0        | 2     | 0     | 0        | 0     | 1     | 0        | 1     | 9     | 0        | 9     | 26    | 1         | 27    | 0     | 0       | o   | 381                       | PM Pea     |
| - 16:15            | 8       | 0        | 8     | 149   | 1       | 150   | 6     | 0        | 6     | 0     | 0        | 0     | 8     | 0        | 8     | 10    | 2         | 12    | 44    | 1      | 45    | 0     | 0        | 0     | 7       | 2       | 9     | 131      | 132      | 2 5    | 0        | 5     | 0     | 0        | 0     | 1     | 0        | 1     | 11    | 0        | 11    | 27    | 0         | 27    | 0     | 0       | 0   | 414                       |            |
| - 16:30            | 10      | 0        | 10    | 124   | 4       | 128   | 3     | 0        | 3     | 0     | 0        | 0     | 14    | 0        | 14    | 19    | 0         | 19    | 40    | 2      | 42    | 0     | 0        | 0     | 7       | 0       | 7     | 164      | 2 166    | 6      | 0        | 6     | 0     | 0        | 0     | 2     | 0        | 2     | 11    | 0        | 11    | 34    | 0         | 34    | 0     | 0       | 0   | 442                       |            |
| al                 | 59      | 1        | 60    | 1128  | 38      | 1166  | 56    | 4        | 60    | 0     | 0        | 0     | 67    | 1        | 68    | 113   | 5         | 118   | 375   | 12     | 387   | 0     | 0        | 0     | 36      | 11      | 47    | 1239     | 5 1274   | 4 60   | 1        | 61    | 0     | 0        | 0     | 16    | 0        | 16    | 92    | 0        | 92    | 239   | 4         | 243   | 0     | 0       | 0   | 3592                      |            |
| Peak               | 25      | 1        | 26    | 577   | 23      | 600   | 32    | 3        | 35    | 0     | 0        | 0     | 42    | 0        | 42    | 60    | 2         | 62    | 210   | 7      | 217   | 0     | 0        | 0     | 16      | 9       | 25    | 675 2    | 6 701    | 4      | 1        | 42    | 0     | 0        | 0     | 9     | 0        | 9     | 48    | 0        | 48    | 130   | 2         | 132   | 0     | 0       | 0   | 1939                      |            |

| OURLY FLOW  |       |        |         |      |        |       |       |       |          |       |       |         |       | _     |       |        | _     |           |       |       |        |        | _      |         |         | _     |         |       | _    |          |       | _     |           |       |       |           |       |       |          |       |       |          |       |       |         |       | _     |          |       |     |       |           |       |
|-------------|-------|--------|---------|------|--------|-------|-------|-------|----------|-------|-------|---------|-------|-------|-------|--------|-------|-----------|-------|-------|--------|--------|--------|---------|---------|-------|---------|-------|------|----------|-------|-------|-----------|-------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|----------|-------|-----|-------|-----------|-------|
| TIME PERIOD |       | Moveme | nt 1    |      | Movem  | ent 2 |       | Мо    | vement 3 | 3     | N     | lovemen | : 3A  |       | Movem | ent 4  |       | Moveme    | nt 5  |       | Moveme | nt 6   |        | Movemen | nt 6A   |       | Movemer | nt 7  |      | Moveme   | nt 8  | M     | ovement 9 | 9     | Mc    | ovement 9 | Α     | Mo    | vement 1 | 10    | M     | lovement | 11    | N     | lovemen | t 12  | ı     | Movement | t 12A |     | Gra   | and Total |       |
|             | Light | Heavy  | / Total | Ligi | nt Hea | /у То | tal L | .ight | Heavy    | Total | Light | Heavy   | Total | Light | Heav  | y Tota | l Lig | ght Heavy | Total | Light | Heavy  | / Tota | l Ligh | t Heav  | y Total | Light | t Heavy | Total | Ligh | nt Heavy | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Tota  | ı . | .ight | Heavy     | Total |
| 7:30 - 8:30 | 12    | 0      | 12      | 457  | 7 20   | 47    | 7     | 9     | 1        | 10    | 0     | 0       | 0     | 18    | 1     | 19     | 74    | 4 1       | 75    | 246   | 6      | 252    | 0      | 0       | 0       | 21    | 5       | 26    | 439  | 35       | 474   | 22    | 2         | 24    | 0     | 0         | 0     | 3     | 0        | 3     | 24    | 0        | 24    | 36    | 1       | 37    | 0     | 0        | 0     |     | 1361  | 72        | 1433  |
| 7:45 - 8:45 | 15    | 0      | 15      | 49   | 1 20   | 51    | 1     | 17    | 1        | 18    | 0     | 0       | 0     | 24    | 1     | 25     | 90    | 0 1       | 91    | 298   | 5      | 303    | 0      | 0       | 0       | 28    | 7       | 35    | 547  | 7 31     | 578   | 40    | 1         | 41    | 0     | 0         | 0     | 5     | 0        | 5     | 24    | 0        | 24    | 39    | 1       | 40    | 0     | 0        | 0     |     | 1618  | 68        | 1686  |
| 8:00 - 9:00 | 17    | 0      | 17      | 544  | 4 18   | 56    | 62    | 21    | 3        | 24    | 0     | 0       | 0     | 34    | 2     | 36     | 10    | 0 8       | 108   | 307   | 5      | 312    | 0      | 0       | 0       | 34    | 5       | 39    | 603  | 3 40     | 643   | 52    | 1         | 53    | 0     | 0         | 0     | 5     | 0        | 5     | 28    | 0        | 28    | 48    | 1       | 49    | 0     | 0        | 0     |     | 1801  | 75        | 1876  |
| 8:15 - 9:15 | 18    | 0      | 18      | 522  | 2 17   | 53    | 39    | 18    | 3        | 21    | 0     | 0       | 0     | 41    | 2     | 43     | 11    | 15 1      | 116   | 306   | 4      | 310    | 0      | 0       | 0       | 34    | 5       | 39    | 684  | 38       | 722   | 56    | 0         | 56    | 0     | 0         | 0     | 4     | 0        | 4     | 31    | 0        | 31    | 66    | 1       | 67    | 0     | 0        | 0     |     | 1895  | 71        | 1966  |
| 8:30 - 9:30 | 23    | 0      | 23      | 472  | 2 21   | 49    | )3    | 20    | 3        | 23    | 0     | 0       | 0     | 40    | 1     | 41     | 10    | )4 1      | 105   | 274   | 4      | 278    | 0      | 0       | 0       | 31    | 3       | 34    | 691  | 33       | 724   | 51    | 0         | 51    | 0     | 0         | 0     | 4     | 0        | 4     | 31    | 0        | 31    | 73    | 2       | 75    | 0     | 0        | 0     |     | 1814  | 68        | 1882  |

| OURLY FLOW    |       |          |       |           |       |       |       |          |       |       |         |       |       |         |       |         |         |       |       |          |       |       |            |       |       | _        |       |       |           |       |             |       |       |          |       |       |           |       | 1     | _        |       |       | _        |       |       |          |       |       |             |       |
|---------------|-------|----------|-------|-----------|-------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|---------|---------|-------|-------|----------|-------|-------|------------|-------|-------|----------|-------|-------|-----------|-------|-------------|-------|-------|----------|-------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-------------|-------|
| TIME PERIOD   | Мо    | vement 1 |       | Movem     | ent 2 |       | Мо    | vement 3 | 3     | M     | ovement | 3A    |       | Movemen | : 4   | Mov     | ement 5 | 5     | M     | lovement | 6     | M     | lovement 6 | SA    | M     | lovement | 7     | N     | ovement 8 |       | Movemer     | nt 9  | N     | lovement | 9A    | Me    | ovement ' | 10    | N     | lovement | 11    | M     | lovement | t 12  | Mov   | ement 12 | 2A    |       | Grand Total |       |
|               | Light | Heavy    | Total | Light Hea | /у То | tal L | _ight | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light I | leavy   | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light Heavy | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy       | Total |
| 14:30 - 15:30 | 24    | 1        | 25    | 578 21    | 59    | 99    | 37    | 3        | 40    | 0     | 0       | 0     | 41    | 1       | 42    | 64      | 3       | 67    | 198   | 9        | 207   | 0     | 0          | 0     | 16    | 9        | 25    | 632   | 18        | 650   | 38 1        | 39    | 0     | 0        | 0     | 10    | 0         | 10    | 49    | 0        | 49    | 117   | 2        | 119   | 0     | 0        | 0     | 1804  | 68          | 1872  |
| 14:45 - 15:45 | 25    | 1        | 26    | 577 23    | 60    | 00    | 32    | 3        | 35    | 0     | 0       | 0     | 42    | 0       | 42    | 60      | 2       | 62    | 210   | 7        | 217   | 0     | 0          | 0     | 16    | 9        | 25    | 675   | 26        | 701   | 41 1        | 42    | 0     | 0        | 0     | 9     | 0         | 9     | 48    | 0        | 48    | 130   | 2        | 132   | 0     | 0        | 0     | 1865  | 74          | 1939  |
| 15:00 - 16:00 | 29    | 0        | 29    | 581 20    | 60    | 01    | 24    | 3        | 27    | 0     | 0       | 0     | 36    | 0       | 36    | 55      | 0       | 55    | 202   | 5        | 207   | 0     | 0          | 0     | 15    | 9        | 24    | 651   | 21        | 672   | 36 1        | 37    | 0     | 0        | 0     | 9     | 0         | 9     | 46    | 0        | 46    | 117   | 2        | 119   | 0     | 0        | 0     | 1801  | 61          | 1862  |
| 15:15 - 16:15 | 31    | 0        | 31    | 577 17    | 59    | 94    | 25    | 2        | 27    | 0     | 0       | 0     | 20    | 0       | 20    | 49      | 2       | 51    | 184   | 2        | 186   | 0     | 0          | 0     | 17    | 8        | 25    | 605   | 18        | 623   | 24 1        | 25    | 0     | 0        | 0     | 6     | 0         | 6     | 43    | 0        | 43    | 114   | 2        | 116   | 0     | 0        | 0     | 1695  | 52          | 1747  |
| 15:30 - 16:30 | 35    | 0        | 35    | 550 17    | 56    | 67    | 19    | 1        | 20    | 0     | 0       | 0     | 26    | 0       | 26    | 49      | 2       | 51    | 177   | 3        | 180   | 0     | 0          | 0     | 20    | 2        | 22    | 607   | 17        | 624   | 22 0        | 22    | 0     | 0        | 0     | 6     | 0         | 6     | 43    | 0        | 43    | 122   | 2        | 124   | 0     | 0        | 0     | 1676  | 44          | 1720  |

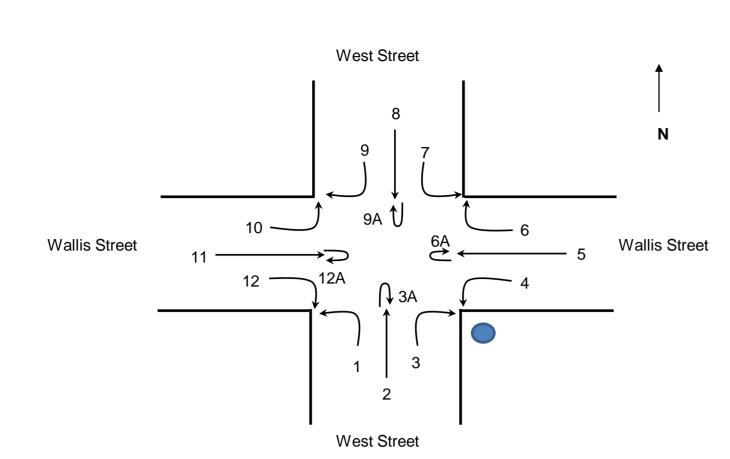


: MRCagney: ForsterTraffic Counts: Thursday, 02 March 2017: Lake Street & West Street





| AM          |       |        |        |        |         |        |        |         |       |         |       |         |       |       |           |       |         |          |       |       |          |       |       |            |       |       |           |       |       |           |       |          |         |        |       |          |       |       |           |       |         |          |       |       |           |       |       |            |         |     |              |     |
|-------------|-------|--------|--------|--------|---------|--------|--------|---------|-------|---------|-------|---------|-------|-------|-----------|-------|---------|----------|-------|-------|----------|-------|-------|------------|-------|-------|-----------|-------|-------|-----------|-------|----------|---------|--------|-------|----------|-------|-------|-----------|-------|---------|----------|-------|-------|-----------|-------|-------|------------|---------|-----|--------------|-----|
| Time        |       | Movem  | nent 1 |        | Movem   | ent 2  |        | Movemo  | ent 3 |         | Mov   | ement 3 | A     | М     | ovement 4 | l .   | Mov     | vement 5 |       | Мо    | vement ( | 6     | М     | lovement ( | 6A    | N     | /lovement | 7     | М     | ovement 8 |       | Move     | ement 9 |        | Mov   | vement 9 | A     | Mo    | ovement 1 | 10    | Mov     | ement 11 | 1     | Мо    | vement 12 | 2     | Mov   | vement 12A | .A      |     |              |     |
| Period      | Light | t Heav | vy Tot | al Lig | ht Heav | vy Tot | al Lig | ht Heav | у То  | otal Li | ght l | Heavy   | Total | Light | Heavy     | Total | Light F | Heavy    | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light Ho | eavy To | otal L | Light | Heavy    | Total | Light | Heavy     | Total | Light I | Heavy    | Total | Light | Heavy     | Total | Light | Heavy      | Total T |     | Peak Hour Vo |     |
| 7:30 - 7:45 | 0     | 0      | 0      | 4      | 0       | 4      | 1      | 0       |       | 1       | 0     | 0       | 0     | 0     | 0         | 0     | 8       | 0        | 8     | 7     | 0        | 7     | 0     | 0          | 0     | 5     | 0         | 5     | 0     | 0         | 0     | 2        | 0       | 2      | 0     | 0        | 0     | 0     | 0         | 0     | 12      | 0        | 12    | 1     | 0         | 1     | 0     | 0          | 0       | 40  | 7:30 - 8:30  | 236 |
| 7:45 - 8:00 | 5     | 0      | 5      | 4      | 0       | 4      | 1      | 0       |       | 1       | 0     | 0       | 0     | 1     | 1         | 2     | 17      | 1        | 18    | 6     | 0        | 6     | 1     | 0          | 1     | 6     | 0         | 6     | 1     | 0         | 1     | 4        | 0       | 4      | 0     | 0        | 0     | 1     | 0         | 1     | 7       | 1        | 8     | 1     | 0         | 1     | 0     | 0          | 0       | 58  | 7:45 - 8:45  | 289 |
| 8:00 - 8:15 | 0     | 1      | 1      | 8      | 3 0     | 8      | 0      | 0       |       | 0       | 0     | 0       | 0     | 0     | 0         | 0     | 18      | 0        | 18    | 10    | 1        | 11    | 0     | 0          | 0     | 6     | 0         | 6     | 0     | 0         | 0     | 2        | 0       | 2      | 0     | 0        | 0     | 1     | 0         | 1     | 8       | 0        | 8     | 2     | 0         | 2     | 0     | 0          | 0       | 57  | 8:00 - 9:00  | 344 |
| 8:15 - 8:30 | 0     | 0      | 0      | 12     | 2 0     | 12     | 2 1    | 0       |       | 1       | 0     | 0       | 0     | 1     | 0         | 1     | 21      | 0        | 21    | 22    | 0        | 22    | 1     | 0          | 1     | 6     | 0         | 6     | 0     | 0         | 0     | 2        | 0       | 2      | 1     | 0        | 1     | 1     | 0         | 1     | 9       | 0        | 9     | 3     | 0         | 3     | 1     | 0          | 1       | 81  | 8:15 - 9:15  | 395 |
| 8:30 - 8:45 | 3     | 0      | 3      | 6      | 0       | 6      | 0      | 0       | (     | 0       | 0     | 0       | 0     | 3     | 0         | 3     | 22      | 0        | 22    | 28    | 0        | 28    | 0     | 0          | 0     | 7     | 0         | 7     | 1     | 0         | 1     | 5        | 0       | 5      | 0     | 0        | 0     | 3     | 1         | 4     | 12      | 0        | 12    | 2     | 0         | 2     | 0     | 0          | 0       | 93  | 8:30 - 9:30  | 411 |
| 8:45 - 9:00 | 4     | 0      | 4      | 10     | 0       | 10     | 1      | 0       |       | 1       | 0     | 0       | 0     | 3     | 0         | 3     | 26      | 0        | 26    | 31    | 0        | 31    | 0     | 0          | 0     | 14    | 0         | 14    | 1     | 0         | 1     | 4        | 0       | 4      | 0     | 0        | 0     | 2     | 0         | 2     | 13      | 1        | 14    | 1     | 0         | 1     | 2     | 0          | 2       | 113 | AM Peak      | 411 |
| 9:00 - 9:15 | 11    | 1      | 12     | ? 7    | 0       | 7      | 1      | 0       |       | 1       | 0     | 0       | 0     | 2     | 0         | 2     | 25      | 0        | 25    | 17    | 1        | 18    | 1     | 0          | 1     | 9     | 0         | 9     | 1     | 0         | 1     | 6        | 0       | 6      | 0     | 0        | 0     | 4     | 0         | 4     | 20      | 0        | 20    | 1     | 0         | 1     | 1     | 0          | 1       | 108 |              |     |
| 9:15 - 9:30 | 4     | 0      | 4      | 6      | 0       | 6      | 2      | 0       |       | 2       | 0     | 0       | 0     | 1     | 0         | 1     | 16      | 1        | 17    | 17    | 0        | 17    | 0     | 0          | 0     | 17    | 0         | 17    | 1     | 0         | 1     | 7        | 0       | 7      | 0     | 0        | 0     | 6     | 0         | 6     | 13      | 3        | 16    | 3     | 0         | 3     | 0     | 0          | 0       | 97  |              |     |
| Total       | 27    | 2      | 29     | 5      | 7 0     | 57     | 7 7    | 0       |       | 7       | 0     | 0       | 0     | 11    | 1         | 12    | 153     | 2        | 155   | 138   | 2        | 140   | 3     | 0          | 3     | 70    | 0         | 70    | 5     | 0         | 5     | 32       | 0 :     | 32     | 1     | 0        | 1     | 18    | 1         | 19    | 94      | 5        | 99    | 14    | 0         | 14    | 4     | 0          | 4       | 647 |              |     |
| AM Peak     | 22    | 1      | 23     | 29     | 9 0     | 25     | 9 4    | 0       |       | 4       | 0     | 0       | 0     | 9     | 0         | 9     | 89      | 1        | 90    | 93    | 1        | 94    | 1     | 0          | 1     | 47    | 0         | 47    | 4     | 0         | 4     | 22       | 0 2     | 22     | 0     | 0        | 0     | 15    | 1         | 16    | 58      | 4        | 62    | 7     | 0         | 7     | 3     | 0          | 3       | 411 |              |     |


| Time         | М     | Novement ' | 1     |       | Movemen | t 2   |       | Moveme | ent 3 |        | Mov     | ement 3 | Α     | N     | /lovement | : 4   | N     | lovement | 5     |       | Movemen | t 6   | M     | ovement | 6A    | N     | lovement | 7     | M     | ovement | 8     | M     | ovement | 9     | M     | ovement 9/ | Α     | Mo    | vement | 10    | N     | <b>Novement</b> | : 11  | N     | Movemen | t 12  | M     | ovement | 12A | 1                      |         |       |
|--------------|-------|------------|-------|-------|---------|-------|-------|--------|-------|--------|---------|---------|-------|-------|-----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|------------|-------|-------|--------|-------|-------|-----------------|-------|-------|---------|-------|-------|---------|-----|------------------------|---------|-------|
| Period       | Light | Heavy      | Total | Light | Heavy   | Total | Light | Heav   | у То  | otal I | Light I | Heavy   | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy      | Total | Light | Heavy  | Total | Light | Heavy           | Total | Light | Heavy   | Total | Light | Heavy   |     | Total of all Movements |         |       |
| 4:30 - 14:45 | 2     | 0          | 2     | 2     | 0       | 2     | 1     | 0      | 1     | 1      | 0       | 0       | 0     | 0     | 0         | 0     | 17    | 1        | 18    | 11    | 0       | 11    | 0     | 0       | 0     | 26    | 0        | 26    | 0     | 0       | 0     | 4     | 0       | 4     | 0     | 0          | 0     | 6     | 0      | 6     | 17    | 1               | 18    | 0     | 0       | 0     | 1     | 0       | 1   | 89                     | 14:30 - | 15:30 |
| 4:45 - 15:00 | 4     | 0          | 4     | 11    | 1       | 12    | 1     | 0      | 1     | 1      | 0       | 0       | 0     | 0     | 1         | 1     | 15    | 1        | 16    | 12    | 2       | 14    | 0     | 1       | 1     | 21    | 1        | 22    | 2     | 0       | 2     | 6     | 0       | 6     | 2     | 0          | 2     | 3     | 0      | 3     | 28    | 0               | 28    | 1     | 0       | 1     | 2     | 0       | 2   | 115                    | 14:45 - | 15:45 |
| 5:00 - 15:15 | 6     | 1          | 7     | 7     | 0       | 7     | 2     | 0      | 2     | 2      | 0       | 0       | 0     | 2     | 0         | 2     | 14    | 0        | 14    | 21    | 0       | 21    | 0     | 0       | 0     | 21    | 0        | 21    | 0     | 0       | 0     | 1     | 0       | 1     | 0     | 0          | 0     | 4     | 0      | 4     | 23    | 0               | 23    | 0     | 0       | 0     | 4     | 1       | 5   | 107                    | 15:00 - | 16:00 |
| 5:15 - 15:30 | 4     | 0          | 4     | 3     | 0       | 3     | 2     | 0      | 2     | 2      | 0       | 0       | 0     | 0     | 0         | 0     | 19    | 1        | 20    | 15    | 0       | 15    | 0     | 0       | 0     | 14    | 0        | 14    | 0     | 0       | 0     | 3     | 0       | 3     | 0     | 0          | 0     | 2     | 0      | 2     | 23    | 0               | 23    | 1     | 0       | 1     | 0     | 0       | 0   | 87                     | 15:15 - | 16:15 |
| 5:30 - 15:45 | 3     | 0          | 3     | 4     | 0       | 4     | 0     | 0      | (     | 0      | 0       | 0       | 0     | 0     | 0         | 0     | 19    | 0        | 19    | 12    | 0       | 12    | 0     | 0       | 0     | 25    | 0        | 25    | 2     | 0       | 2     | 4     | 0       | 4     | 1     | 0          | 1     | 3     | 0      | 3     | 25    | 1               | 26    | 0     | 0       | o     | 0     | 0       | 0   | 99                     | 15:30 - | 16:30 |
| 5:45 - 16:00 | 4     | 0          | 4     | 7     | 0       | 7     | 1     | 0      | 1     | 1      | 0       | 0       | 0     | 0     | 0         | 0     | 17    | 0        | 17    | 5     | 0       | 5     | 0     | 1       | 1     | 17    | 0        | 17    | 1     | 0       | 1     | 8     | 0       | 8     | 0     | 0          | 0     | 3     | 0      | 3     | 19    | 0               | 19    | 0     | 0       | О     | 0     | 0       | 0   | 83                     | РМ Р    | Peak  |
| 6:00 - 16:15 | 1     | 0          | 1     | 7     | 0       | 7     | 2     | 0      | 2     | 2      | 0       | 0       | 0     | 0     | 0         | 0     | 17    | 0        | 17    | 7     | 3       | 10    | 0     | 0       | 0     | 17    | 0        | 17    | 1     | 0       | 1     | 5     | 0       | 5     | 0     | 0          | 0     | 4     | 0      | 4     | 21    | 0               | 21    | 2     | 0       | 2     | 1     | 0       | 1   | 88                     |         | •     |
| 6:15 - 16:30 | 6     | 1          | 7     | 5     | 0       | 5     | 2     | 0      | 2     | 2      | 0       | 0       | 0     | 1     | 0         | 1     | 16    | 0        | 16    | 18    | 0       | 18    | 0     | 0       | 0     | 20    | 0        | 20    | 0     | 0       | 0     | 0     | 0       | 0     | 1     | 0          | 1     | 2     | 0      | 2     | 21    | 0               | 21    | 0     | 0       | 0     | 2     | 0       | 2   | 95                     |         |       |
| Total        | 30    | 2          | 32    | 46    | 1       | 47    | 11    | 0      | 1     | 1      | 0       | 0       | 0     | 3     | 1         | 4     | 134   | 3        | 137   | 101   | 5       | 106   | 0     | 2       | 2     | 161   | 1        | 162   | 6     | 0       | 6     | 31    | 0       | 31    | 4     | 0          | 4     | 27    | 0      | 27    | 177   | 2               | 179   | 4     | 0       | 4     | 10    | 1       | 11  | 763                    |         |       |
| PM Peak      | 17    | 1          | 18    | 25    | 1       | 26    | 5     | 0      | į     | 5      | 0       | 0       | 0     | 2     | 1         | 3     | 67    | 2        | 69    | 60    | 2       | 62    | 0     | 1       | 1     | 81    | 1        | 82    | 4     | 0       | 4     | 14    | 0       | 14    | 3     | 0          | 3     | 12    | 0      | 12    | 99    | 1               | 100   | 2     | 0       | 2     | 6     | 1       | 7   | 408                    |         |       |

| HOURLY FLOW |       |        |         |      |       |         |       |       |         |       |      |        |       |      |       |         |       |       |          |       |       |            |       |         |          |       |       |           |       |       |          |       |       |           |       |         |          |       |       |         |       |       |         |       |       |          |       |       |          |       |       |             |       |
|-------------|-------|--------|---------|------|-------|---------|-------|-------|---------|-------|------|--------|-------|------|-------|---------|-------|-------|----------|-------|-------|------------|-------|---------|----------|-------|-------|-----------|-------|-------|----------|-------|-------|-----------|-------|---------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|-------------|-------|
| TIME PERIOD |       | Moveme | ent 1   |      | Mov   | ement 2 |       | N     | lovemen | t 3   |      | Moveme | nt 3A |      | M     | ovement | 4     | N     | Movement | t 5   | M     | lovement 6 | i     | Move    | ement 6A | ١     | Mo    | ovement 7 | 7     | Mo    | vement 8 | В     | Mo    | ovement 9 |       | Mov     | ement 9A | 4     | Mo    | ovement | 10    | N     | Novemen | : 11  | N     | lovement | 12    | Mov   | ement 12 | 2A    |       | Grand Total |       |
|             | Light | Heavy  | y Total | l Li | ght H | eavy    | Total | Light | Heavy   | Total | Ligh | t Heav | у То  | otal | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light H | leavy    | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light H | leavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy       | Total |
| 7:30 - 8:30 | 5     | 1      | 6       | 2    | 28    | 0       | 28    | 3     | 0       | 3     | 0    | 0      |       | 0    | 2     | 1       | 3     | 64    | 1        | 65    | 45    | 1          | 46    | 2       | 0        | 2     | 23    | 0         | 23    | 1     | 0        | 1     | 10    | 0         | 10    | 1       | 0        | 1     | 3     | 0       | 3     | 36    | 1       | 37    | 7     | 0        | 7     | 1     | 0        | 1     | 231   | 5           | 236   |
| 7:45 - 8:45 | 8     | 1      | 9       | 3    | 30    | 0       | 30    | 2     | 0       | 2     | 0    | 0      |       | 0    | 5     | 1       | 6     | 78    | 1        | 79    | 66    | 1          | 67    | 2       | 0        | 2     | 25    | 0         | 25    | 2     | 0        | 2     | 13    | 0         | 13    | 1       | 0        | 1     | 6     | 1       | 7     | 36    | 1       | 37    | 8     | 0        | 8     | 1     | 0        | 1     | 283   | 6           | 289   |
| 8:00 - 9:00 | 7     | 1      | 8       | 3    | 36    | 0       | 36    | 2     | 0       | 2     | 0    | 0      |       | 0    | 7     | 0       | 7     | 87    | 0        | 87    | 91    | 1          | 92    | 1       | 0        | 1     | 33    | 0         | 33    | 2     | 0        | 2     | 13    | 0         | 13    | 1       | 0        | 1     | 7     | 1       | 8     | 42    | 1       | 43    | 8     | 0        | 8     | 3     | 0        | 3     | 340   | 4           | 344   |
| 8:15 - 9:15 | 18    | 1      | 19      | 3    | 35    | 0       | 35    | 3     | 0       | 3     | 0    | 0      |       | 0    | 9     | 0       | 9     | 94    | 0        | 94    | 98    | 1          | 99    | 2       | 0        | 2     | 36    | 0         | 36    | 3     | 0        | 3     | 17    | 0         | 17    | 1       | 0        | 1     | 10    | 1       | 11    | 54    | 1       | 55    | 7     | 0        | 7     | 4     | 0        | 4     | 391   | 4           | 395   |
| 8:30 - 9:30 | 22    | 1      | 23      | 2    | 29    | 0       | 29    | 4     | 0       | 4     | 0    | 0      |       | 0    | 9     | 0       | 9     | 89    | 1        | 90    | 93    | 1          | 94    | 1       | 0        | 1     | 47    | 0         | 47    | 4     | 0        | 4     | 22    | 0         | 22    | 0       | 0        | 0     | 15    | 1       | 16    | 58    | 4       | 62    | 7     | 0        | 7     | 3     | 0        | 3     | 403   | 8           | 411   |

| OURLY FLOW    |       |          |       |       |         |       |       |          |       |       |          |       |       |         |       |       |         |       |       |          |       |       |            |       |       |           |          |       |           |       |             |         |       |          |       |       |          |       |       |         |       |       |         |       |       |          |       |       |             |       |
|---------------|-------|----------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|------------|-------|-------|-----------|----------|-------|-----------|-------|-------------|---------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|-------------|-------|
| TIME PERIOD   | N     | Movement | 1     | Мо    | ement 2 | 2     | N     | lovement | 3     | M     | lovement | 3A    |       | Movemen | t 4   | M     | ovement | 5     | N     | lovement | t 6   | М     | ovement 6/ | ١     | Me    | ovement 7 | <u>'</u> | M     | ovement 8 |       | Moveme      | nt 9    | N     | lovement | 9A    | Mo    | vement 1 | 0     | Mo    | ovement | 11    | Mo    | ovement | 12    | Mov   | ement 12 | 2A    |       | Grand Total |       |
|               | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light | Heavy     | Total    | Light | Heavy 1   | Total | Light Heavy | / Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy       | Total |
| 14:30 - 15:30 | 16    | 1        | 17    | 23    | 1       | 24    | 6     | 0        | 6     | 0     | 0        | 0     | 2     | 1       | 3     | 65    | 3       | 68    | 59    | 2        | 61    | 0     | 1          | 1     | 82    | 1         | 83       | 2     | 0         | 2     | 14 0        | 14      | 2     | 0        | 2     | 15    | 0        | 15    | 91    | 1       | 92    | 2     | 0       | 2     | 7     | 1        | 8     | 386   | 12          | 398   |
| 14:45 - 15:45 | 17    | 1        | 18    | 25    | 1       | 26    | 5     | 0        | 5     | 0     | 0        | 0     | 2     | 1       | 3     | 67    | 2       | 69    | 60    | 2        | 62    | 0     | 1          | 1     | 81    | 1         | 82       | 4     | 0         | 4     | 14 0        | 14      | 3     | 0        | 3     | 12    | 0        | 12    | 99    | 1       | 100   | 2     | 0       | 2     | 6     | 1        | 7     | 397   | 11          | 408   |
| 15:00 - 16:00 | 17    | 1        | 18    | 21    | 0       | 21    | 5     | 0        | 5     | 0     | 0        | 0     | 2     | 0       | 2     | 69    | 1       | 70    | 53    | 0        | 53    | 0     | 1          | 1     | 77    | 0         | 77       | 3     | 0         | 3     | 16 0        | 16      | 1     | 0        | 1     | 12    | 0        | 12    | 90    | 1       | 91    | 1     | 0       | 1     | 4     | 1        | 5     | 371   | 5           | 376   |
| 15:15 - 16:15 | 12    | 0        | 12    | 21    | 0       | 21    | 5     | 0        | 5     | 0     | 0        | 0     | 0     | 0       | 0     | 72    | 1       | 73    | 39    | 3        | 42    | 0     | 1          | 1     | 73    | 0         | 73       | 4     | 0         | 4     | 20 0        | 20      | 1     | 0        | 1     | 12    | 0        | 12    | 88    | 1       | 89    | 3     | 0       | 3     | 1     | 0        | 1     | 351   | 6           | 357   |
| 15:30 - 16:30 | 14    | 1        | 15    | 23    | 0       | 23    | 5     | 0        | 5     | 0     | 0        | 0     | 1     | 0       | 1     | 69    | 0       | 69    | 42    | 3        | 45    | 0     | 1          | 1     | 79    | 0         | 79       | 4     | 0         | 4     | 17 0        | 17      | 2     | 0        | 2     | 12    | 0        | 12    | 86    | 1       | 87    | 2     | 0       | 2     | 3     | 0        | 3     | 359   | 6           | 365   |

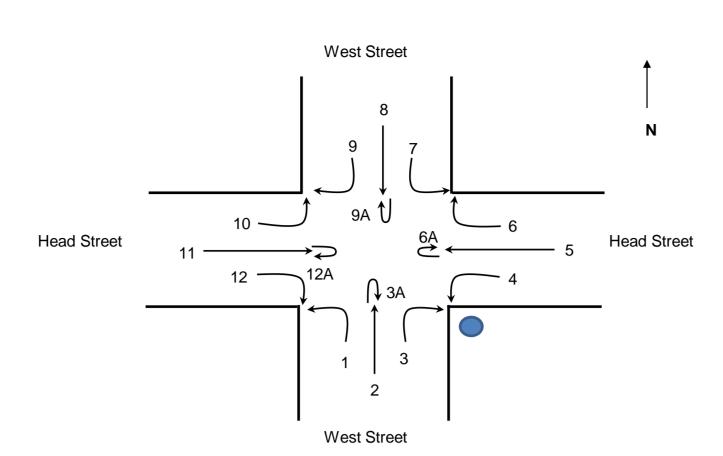


: MRCagney : ForsterTraffic Counts : Thursday, 02 March 2017 : West Street & Wallis Street





| AM          |       |        |         |      |         |       |       |         |       |        |        |        |       |         |        |         |          |       |       |         |       |       |          |       |       |          |       |       |          |       |       |           |       |       |         |       |       |          |       |       |           |       |       |         |       |       |           |       |                           |                            |             |
|-------------|-------|--------|---------|------|---------|-------|-------|---------|-------|--------|--------|--------|-------|---------|--------|---------|----------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|---------|-------|-------|----------|-------|-------|-----------|-------|-------|---------|-------|-------|-----------|-------|---------------------------|----------------------------|-------------|
| Time        |       | Moveme | ent 1   |      | Movemer | nt 2  |       | Movemen | nt 3  |        | Moveme | ent 3A |       | Movem   | ent 4  |         | Movemer  | nt 5  |       | Movemer | nt 6  |       | Movement | 6A    | N     | Movement | : 7   | N     | lovement | t 8   | M     | ovement 9 | 9     | М     | ovement | 9A    | N     | Movement | 10    | Mo    | ovement 1 | 11    | Me    | ovement | 12    | Мо    | vement 12 | .A    |                           |                            |             |
| Period      | Light | Heavy  | y Total | Ligh | t Heavy | Total | Light | Heavy   | Total | l Ligh | t Heav | vy Tot | al Li | ght Hea | vy Tot | al Ligi | nt Heavy | Total | Light | t Heavy | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy     | Total | Total of all<br>Movements | Peak Hour V<br>Determinati | olume<br>on |
| 7:30 - 7:45 | 1     | 0      | 1       | 13   | 0       | 13    | 0     | 0       | 0     | 0      | 0      | 0      |       | 1 0     | 1      | 0       | 1        | 1     | 1     | 0       | 1     | 0     | 0        | 0     | 0     | 0        | 0     | 3     | 0        | 3     | 0     | 0         | 0     | 0     | 0       | 0     | 1     | 0        | 1     | 0     | 0         | 0     | 0     | 0       | 0     | 0     | 0         | 0     | 21                        | 7:30 - 8:30                | 128         |
| 7:45 - 8:00 | 2     | 0      | 2       | 10   | 0       | 10    | 0     | 0       | 0     | 0      | 0      | 0      |       | 2 0     | 2      | 2       | 0        | 2     | 0     | 0       | 0     | 0     | 0        | 0     | 1     | 0        | 1     | 3     | 0        | 3     | 0     | 0         | 0     | 0     | 0       | 0     | 0     | 0        | 0     | 1     | 0         | 1     | 3     | 0       | 3     | 0     | 0         | 0     | 24                        | 7:45 - 8:4                 | 5 163       |
| 8:00 - 8:15 | 1     | 0      | 1       | 22   | 1       | 23    | 0     | 0       | 0     | 0      | 0      | 0      |       | 1 0     | 1      | 4       | 0        | 4     | 0     | 0       | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 4     | 0        | 4     | 0     | 0         | 0     | 0     | 0       | 0     | 1     | 0        | 1     | 2     | 1         | 3     | 0     | 0       | 0     | 0     | 0         | 0     | 37                        | 8:00 - 9:00                | 0 202       |
| 8:15 - 8:30 | 7     | 0      | 7       | 25   | 0       | 25    | 0     | 0       | 0     | 0      | 0      | 0      |       | 2 0     | 2      | 3       | 0        | 3     | 2     | 1       | 3     | 0     | 0        | 0     | 0     | 0        | 0     | 2     | 0        | 2     | 1     | 0         | 1     | 0     | 0       | 0     | 1     | 0        | 1     | 0     | 0         | 0     | 2     | 0       | 2     | 0     | 0         | 0     | 46                        | 8:15 - 9:1                 | 5 215       |
| 8:30 - 8:45 | 9     | 1      | 10      | 26   | 0       | 26    | 0     | 0       | 0     | 1      | 0      | 1      |       | 2 0     | 2      | 2       | 0        | 2     | 2     | 0       | 2     | 1     | 0        | 1     | 0     | 0        | 0     | 5     | 0        | 5     | 1     | 0         | 1     | 0     | 0       | 0     | 3     | 0        | 3     | 0     | 0         | 0     | 3     | 0       | 3     | 0     | 0         | 0     | 56                        | 8:30 - 9:30                | 232         |
| 8:45 - 9:00 | 11    | 0      | 11      | 24   | 0       | 24    | 1     | 0       | 1     | 0      | 0      | 0      |       | 3 0     | 3      | 10      | 0        | 10    | 0     | 0       | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 5     | 0        | 5     | 0     | 0         | 0     | 0     | 0       | 0     | 3     | 0        | 3     | 0     | 0         | 0     | 5     | 0       | 5     | 1     | 0         | 1     | 63                        | AM Peak                    | 232         |
| 9:00 - 9:15 | 11    | 1      | 12      | 19   | 0       | 19    | 0     | 0       | 0     | 0      | 0      | 0      |       | 2 0     | 2      | 5       | 0        | 5     | 1     | 0       | 1     | 0     | 0        | 0     | 0     | 0        | 0     | 4     | 0        | 4     | 1     | 0         | 1     | 0     | 0       | 0     | 1     | 0        | 1     | 0     | 0         | 0     | 5     | 0       | 5     | 0     | 0         | 0     | 50                        |                            |             |
| 9:15 - 9:30 | 8     | 0      | 8       | 15   | 0       | 15    | 0     | 0       | 0     | 0      | 0      | 0      |       | 2 0     | 2      | 6       | 0        | 6     | 2     | 0       | 2     | 0     | 0        | 0     | 2     | 0        | 2     | 4     | 0        | 4     | 1     | 0         | 1     | 1     | 0       | 1     | 7     | 0        | 7     | 2     | 0         | 2     | 11    | 0       | 11    | 1     | 1         | 2     | 63                        |                            |             |
| Total       | 50    | 2      | 52      | 154  | 1       | 155   | 1     | 0       | 1     | 1      | 0      | 1      |       | 15 0    | 15     | 32      | 1        | 33    | 8     | 1       | 9     | 1     | 0        | 1     | 3     | 0        | 3     | 30    | 0        | 30    | 4     | 0         | 4     | 1     | 0       | 1     | 17    | 0        | 17    | 5     | 1         | 6     | 29    | 0       | 29    | 2     | 1         | 3     | 360                       |                            |             |
| AM Peak     | 39    | 2      | 41      | 84   | 0       | 84    | 1     | 0       | 1     | 1      | 0      | 1      |       | 9 0     | 9      | 23      | 0        | 23    | 5     | 0       | 5     | 1     | 0        | 1     | 2     | 0        | 2     | 18    | 0        | 18    | 3     | 0         | 3     | 1     | 0       | 1     | 14    | 0        | 14    | 2     | 0         | 2     | 24    | 0       | 24    | 2     | 1         | 3     | 232                       |                            |             |


| Time       | Mo      | vement 1 |       | N     | lovement | 2     | N     | lovement | t 3   | ı     | Movement: | 3A    | N     | lovement | 4     | Мс    | ovement 5 | 5     | Мо    | vement 6 | 5     | Mo    | vement 6 | A     | Mov     | ement 7 |       | Move     | ment 8   |       | Movemen  | t 9   | Mov     | ement 9A | 4     | Mo    | vement 1 | 0     | Мо    | ovement 1 | 1     | Mc    | vement 1 | 12    | Mo    | ovement 12 | 2A |                           |            |
|------------|---------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|----------|-------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|---------|---------|-------|----------|----------|-------|----------|-------|---------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|----------|-------|-------|------------|----|---------------------------|------------|
| Period     | Light I | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light H | eavy T  | Γotal | Light He | avy Tota | l Lig | ht Heavy | Total | Light H | leavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy      |    | Total of all<br>Movements |            |
| 30 - 14:45 | 5       | 0        | 5     | 13    | 0        | 13    | 0     | 0        | 0     | 0     | 0         | 0     | 1     | 0        | 1     | 4     | 0         | 4     | 1     | 0        | 1     | 0     | 0        | 0     | 0       | 0       | 0     | 8        | 0 8      | 1     | 0        | 1     | 0       | 0        | 0     | 4     | 0        | 4     | 1     | 0         | 1     | 12    | 0        | 12    | 4     | 0          | 4  | 54                        | 14:30 - 15 |
| 45 - 15:00 | 9       | 1        | 10    | 17    | 2        | 19    | 1     | 0        | 1     | 0     | 0         | 0     | 5     | 0        | 5     | 3     | 0         | 3     | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0       | 0     | 8        | 1 9      | 0     | 0        | 0     | 0       | 0        | 0     | 4     | 0        | 4     | 0     | 0         | 0     | 12    | 0        | 12    | 2     | 0          | 2  | 65                        | 14:45 - 15 |
| 00 - 15:15 | 9       | 0        | 9     | 21    | 0        | 21    | 0     | 0        | 0     | 0     | 0         | 0     | 2     | 0        | 2     | 3     | 0         | 3     | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0       | 0     | 7        | 0 7      | 0     | 0        | 0     | 0       | 0        | 0     | 7     | 0        | 7     | 5     | 0         | 5     | 13    | 0        | 13    | 0     | 0          | 0  | 67                        | 15:00 - 16 |
| 5 - 15:30  | 7       | 0        | 7     | 12    | 0        | 12    | 0     | 0        | 0     | 1     | 0         | 1     | 0     | 0        | 0     | 10    | 0         | 10    | 2     | 0        | 2     | 0     | 0        | 0     | 1       | 0       | 1     | 4        | 0 4      | 1     | 0        | 1     | 0       | 0        | 0     | 3     | 0        | 3     | 0     | 0         | 0     | 8     | 0        | 8     | 0     | 0          | 0  | 49                        | 15:15 - 16 |
| 0 - 15:45  | 4       | 0        | 4     | 12    | 0        | 12    | 1     | 0        | 1     | 0     | 0         | 0     | 2     | 0        | 2     | 2     | 0         | 2     | 0     | 0        | 0     | 0     | 0        | 0     | 2       | 0       | 2     | 9        | <b>9</b> | 2     | 0        | 2     | 1       | 0        | 1     | 8     | 0        | 8     | 2     | 0         | 2     | 11    | 0        | 11    | 1     | 0          | 1  | 57                        | 15:30 - 16 |
| - 16:00    | 4       | 0        | 4     | 10    | 0        | 10    | 0     | 0        | 0     | 1     | 0         | 1     | 3     | 0        | 3     | 7     | 0         | 7     | 0     | 0        | 0     | 0     | 0        | 0     | 1       | 0       | 1     | 7        | 0 7      | 0     | 0        | 0     | 0       | 0        | 0     | 7     | 0        | 7     | 0     | 0         | o     | 8     | 0        | 8     | 0     | О          | 0  | 48                        | PM Pea     |
| - 16:15    | 1       | 0        | 1     | 17    | 3        | 20    | 0     | 0        | 0     | 0     | 0         | 0     | 3     | 0        | 3     | 3     | 0         | 3     | 1     | 0        | 1     | 0     | 0        | 0     | 2       | 0       | 2     | 6        | 0 6      | 1     | 0        | 1     | 0       | 0        | 0     | 1     | 0        | 1     | 1     | 0         | 1     | 5     | 0        | 5     | 1     | 0          | 1  | 45                        |            |
| 5 - 16:30  | 11      | 0        | 11    | 15    | 0        | 15    | 2     | 0        | 2     | 0     | 0         | 0     | 5     | 0        | 5     | 9     | 0         | 9     | 0     | 0        | 0     | 0     | 0        | 0     | 1       | 0       | 1     | 5        | 0 5      | 2     | 0        | 2     | 0       | 0        | 0     | 6     | 0        | 6     | 1     | 0         | 1     | 6     | 0        | 6     | 1     | 0          | 1  | 64                        |            |
| otal       | 50      | 1        | 51    | 117   | 5        | 122   | 4     | 0        | 4     | 2     | 0         | 2     | 21    | 0        | 21    | 41    | 0         | 41    | 4     | 0        | 4     | 0     | 0        | 0     | 7       | 0       | 7     | 54       | 1 55     | 7     | 0        | 7     | 1       | 0        | 1     | 40    | 0        | 40    | 10    | 0         | 10    | 75    | 0        | 75    | 9     | 0          | 9  | 449                       |            |
| Peak       | 29      | 1        | 30    | 62    | 2        | 64    | 2     | 0        | 2     | 1     | 0         | 1     | 9     | 0        | 9     | 18    | 0         | 18    | 2     | 0        | 2     | 0     | 0        | 0     | 3       | 0       | 3     | 28       | 1 29     | 3     | 0        | 3     | 1       | 0        | 1     | 22    | 0        | 22    | 7     | 0         | 7     | 44    | 0        | 44    | 3     | 0          | 3  | 238                       |            |

| HOURLY FLOW |       |         |       |       |        |       |      |        |        |      |       |          |            |       |         |       |       |         |       |       |            |       |         |          |       |       |          |          |       |         |       |       |          |       |         |         |       |       |          |       |       |         |       |       |           |       |           |         |       |                    |       |
|-------------|-------|---------|-------|-------|--------|-------|------|--------|--------|------|-------|----------|------------|-------|---------|-------|-------|---------|-------|-------|------------|-------|---------|----------|-------|-------|----------|----------|-------|---------|-------|-------|----------|-------|---------|---------|-------|-------|----------|-------|-------|---------|-------|-------|-----------|-------|-----------|---------|-------|--------------------|-------|
| TIME PERIOD |       | Movemen | t 1   |       | Moveme | nt 2  |      | Moven  | ment 3 |      | Мо    | vement 3 | 3 <b>A</b> |       | Movemen | t 4   |       | Movemen | t 5   | IV    | lovement ( | 6     | Mov     | ement 6A |       | Мс    | vement 7 | <b>'</b> | Me    | ovement | 8     | Мо    | vement 9 |       | Move    | ment 9A | 1     | Мо    | vement 1 | 0     | М     | ovement | 11    | М     | ovement 1 | 2     | Moveme    | nt 12A  |       | <b>Grand Total</b> |       |
|             | Light | Heavy   | Total | Light | t Heav | Total | Ligh | ht Hea | avy T  | otal | Light | Heavy    | Total      | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy      | Total | Light H | leavy    | Total | Light | Heavy    | Total    | Light | Heavy   | Total | Light | Heavy    | Total | Light H | eavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy     | Total | Light Hea | y Total | Light | Heavy              | Total |
| 7:30 - 8:30 | 11    | 0       | 11    | 70    | 1      | 71    | 0    | 0      | 0      | 0    | 0     | 0        | 0          | 6     | 0       | 6     | 9     | 1       | 10    | 3     | 1          | 4     | 0       | 0        | 0     | 1     | 0        | 1        | 12    | 0       | 12    | 1     | 0        | 1     | 0       | 0       | 0     | 3     | 0        | 3     | 3     | 1       | 4     | 5     | 0         | 5     | 0 0       | 0       | 124   | 4                  | 128   |
| 7:45 - 8:45 | 19    | 1       | 20    | 83    | 1      | 84    | 0    | 0      | 0      | 0    | 1     | 0        | 1          | 7     | 0       | 7     | 11    | 0       | 11    | 4     | 1          | 5     | 1       | 0        | 1     | 1     | 0        | 1        | 14    | 0       | 14    | 2     | 0        | 2     | 0       | 0       | 0     | 5     | 0        | 5     | 3     | 1       | 4     | 8     | 0         | 8     | 0 0       | 0       | 159   | 4                  | 163   |
| 8:00 - 9:00 | 28    | 1       | 29    | 97    | 1      | 98    | 1    | 0      | 0      | 1    | 1     | 0        | 1          | 8     | 0       | 8     | 19    | 0       | 19    | 4     | 1          | 5     | 1       | 0        | 1     | 0     | 0        | 0        | 16    | 0       | 16    | 2     | 0        | 2     | 0       | 0       | 0     | 8     | 0        | 8     | 2     | 1       | 3     | 10    | 0         | 10    | 1 0       | 1       | 198   | 4                  | 202   |
| 8:15 - 9:15 | 38    | 2       | 40    | 94    | 0      | 94    | 1    | 0      | 0      | 1    | 1     | 0        | 1          | 9     | 0       | 9     | 20    | 0       | 20    | 5     | 1          | 6     | 1       | 0        | 1     | 0     | 0        | 0        | 16    | 0       | 16    | 3     | 0        | 3     | 0       | 0       | 0     | 8     | 0        | 8     | 0     | 0       | 0     | 15    | 0         | 15    | 1 0       | 1       | 212   | 3                  | 215   |
| 8:30 - 9:30 | 39    | 2       | 41    | 84    | 0      | 84    | 1    | 0      | 0      | 1    | 1     | 0        | 1          | 9     | 0       | 9     | 23    | 0       | 23    | 5     | 0          | 5     | 1       | 0        | 1     | 2     | 0        | 2        | 18    | 0       | 18    | 3     | 0        | 3     | 1       | 0       | 1     | 14    | 0        | 14    | 2     | 0       | 2     | 24    | 0         | 24    | 2 1       | 3       | 229   | 3                  | 232   |

| OURLY FLOW    |       |          |       |       |           |       |       |          |       |       |         |       | •     |         |       |       |          |       | _     |         |       |       |           |       |       |           |       |       |           |       |             |       | •     |           |       |       |          |       |       |          |       |       |           |       |         |          |       |       |             |       |
|---------------|-------|----------|-------|-------|-----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|---------|-------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|-------------|-------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-------|---------|----------|-------|-------|-------------|-------|
| TIME PERIOD   | M     | Movement | 1     | N     | ovement 2 | 2     | N     | Novement | 3     | M     | ovement | 3A    |       | Movemen | t 4   | Мо    | vement 5 | 5     | N     | lovemen | t 6   | М     | ovement 6 | Α     | M     | ovement 7 | 7     | M     | ovement 8 |       | Moveme      | nt 9  | M     | ovement 9 | Α     | Mov   | ement 10 | )     | Мо    | vement 1 | 1     | Mov   | vement 12 | 2     | Move    | ement 12 | 2A    |       | Grand Total |       |
|               | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light Heavy | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light I | Heavy    | Total | Light | Heavy       | Total |
| 14:30 - 15:30 | 30    | 1        | 31    | 63    | 2         | 65    | 1     | 0        | 1     | 1     | 0       | 1     | 8     | 0       | 8     | 20    | 0        | 20    | 3     | 0       | 3     | 0     | 0         | 0     | 1     | 0         | 1     | 27    | 1         | 28    | 2 0         | 2     | 0     | 0         | 0     | 18    | 0        | 18    | 6     | 0        | 6     | 45    | 0         | 45    | 6       | 0        | 6     | 231   | 4           | 235   |
| 14:45 - 15:45 | 29    | 1        | 30    | 62    | 2         | 64    | 2     | 0        | 2     | 1     | 0       | 1     | 9     | 0       | 9     | 18    | 0        | 18    | 2     | 0       | 2     | 0     | 0         | 0     | 3     | 0         | 3     | 28    | 1         | 29    | 3 0         | 3     | 1     | 0         | 1     | 22    | 0        | 22    | 7     | 0        | 7     | 44    | 0         | 44    | 3       | 0        | 3     | 234   | 4           | 238   |
| 15:00 - 16:00 | 24    | 0        | 24    | 55    | 0         | 55    | 1     | 0        | 1     | 2     | 0       | 2     | 7     | 0       | 7     | 22    | 0        | 22    | 2     | 0       | 2     | 0     | 0         | 0     | 4     | 0         | 4     | 27    | 0         | 27    | 3 0         | 3     | 1     | 0         | 1     | 25    | 0        | 25    | 7     | 0        | 7     | 40    | 0         | 40    | 1       | 0        | 1     | 221   | 0           | 221   |
| 15:15 - 16:15 | 16    | 0        | 16    | 51    | 3         | 54    | 1     | 0        | 1     | 2     | 0       | 2     | 8     | 0       | 8     | 22    | 0        | 22    | 3     | 0       | 3     | 0     | 0         | 0     | 6     | 0         | 6     | 26    | 0         | 26    | 4 0         | 4     | 1     | 0         | 1     | 19    | 0        | 19    | 3     | 0        | 3     | 32    | 0         | 32    | 2       | 0        | 2     | 196   | 3           | 199   |
| 15:30 - 16:30 | 20    | 0        | 20    | 54    | 3         | 57    | 3     | 0        | 3     | 1     | 0       | 1     | 13    | 0       | 13    | 21    | 0        | 21    | 1     | 0       | 1     | 0     | 0         | 0     | 6     | 0         | 6     | 27    | 0         | 27    | 5 0         | 5     | 1     | 0         | 1     | 22    | 0        | 22    | 4     | 0        | 4     | 30    | 0         | 30    | 3       | 0        | 3     | 211   | 3           | 214   |

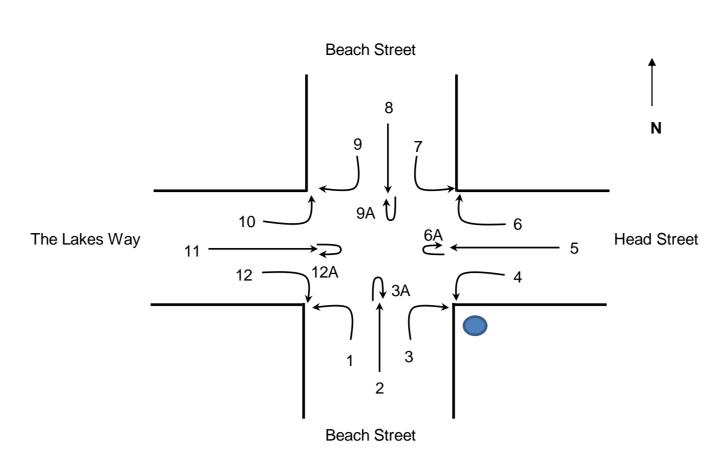


: MRCagney: ForsterTraffic Counts: Thursday, 02 March 2017: West Street & Head Street





| AM       |             |       |          |       |       |          |       |       |         |       |       |         |        |        |         |         |       |        |            |           |        |          |       |          |       |       |         |       |        |         |         |      |          |       |       |          |       |       |           |       |       |           |       |       |           |       |         |         |    |                           |                               |      |
|----------|-------------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|--------|--------|---------|---------|-------|--------|------------|-----------|--------|----------|-------|----------|-------|-------|---------|-------|--------|---------|---------|------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|---------|---------|----|---------------------------|-------------------------------|------|
| Time     | e           | Мо    | vement 1 | 1     |       | Movement | t 2   | N     | Movemen | nt 3  | N     | Movemer | nt 3A  |        | Moveme  | nt 4    |       | Move   | ment 5     |           | Move   | ment 6   |       | Movemen  | t 6A  |       | Movemer | nt 7  |        | Moveme  | ent 8   |      | Movement | t 9   | Mov   | vement 9 | Α     | Mo    | ovement 1 | 0     | Mo    | ovement 1 | 1     | Мо    | vement 12 | 2     | Move    | ment 12 | 2A |                           |                               |      |
| Perio    | od I        | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | y Tota | l Ligh | nt Heav | / Total | l Liç | ght He | avy To     | tal Li    | ght He | avy Tota | l Lig | ht Heavy | Total | Light | Heavy   | Total | l Ligi | ht Heav | y Total | Ligh | t Heavy  | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light F | leavy   |    | Total of all<br>Movements | Peak Hour Vo<br>Determination |      |
| 7:30 - 7 | <b>':45</b> | 18    | 0        | 18    | 1     | 0        | 1     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 1     | 16     | 5 12       | 21        | 4      | 0 4      | 0     | 0        | 0     | 12    | 1       | 13    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 0     | 0         | 0     | 91    | 11        | 102   | 2     | 0         | 2     | 0       | 0       | 0  | 261                       | 7:30 - 8:30                   | 1440 |
| 7:45 - 8 | 3:00        | 14    | 0        | 14    | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 16    | 61     | 8 10       | <b>69</b> | 8      | 0 8      | 0     | 0        | 0     | 16    | 4       | 20    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 1     | 0         | 1     | 127   | 8         | 135   | 4     | 0         | 4     | 0       | 0       | 0  | 351                       | 7:45 - 8:45                   | 1694 |
| 8:00 - 8 | 3:15        | 22    | 1        | 23    | 0     | 0        | 0     | 1     | 0       | 1     | 0     | 0       | 0      | 2      | 0       | 2       | 18    | 81     | 6 18       | 37        | 5      | 0 5      | 0     | 0        | 0     | 13    | 0       | 13    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 1     | 0         | 1     | 132   | 14        | 146   | 1     | 0         | 1     | 0       | 0       | 0  | 379                       | 8:00 - 9:00                   | 1828 |
| 8:15 - 8 | 3:30        | 28    | 1        | 29    | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 20    | 04     | 6 <b>2</b> | 10        | 12     | 0 12     | 0     | 0        | 0     | 17    | 0       | 17    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 4     | 0         | 4     | 167   | 9         | 176   | 1     | 0         | 1     | 0       | 0       | 0  | 449                       | 8:15 - 9:15                   | 1862 |
| 8:30 - 8 | 3:45        | 33    | 0        | 33    | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 19    | 94     | 6 20       | 00        | 11     | 0 11     | 0     | 0        | 0     | 17    | 0       | 17    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 1     | 0         | 1     | 238   | 9         | 247   | 6     | 0         | 6     | 0       | 0       | 0  | 515                       | 8:30 - 9:30                   | 1780 |
| 8:45 - 9 | ):00        | 28    | 0        | 28    | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 2.    | 11     | 5 <b>2</b> | 16        | 7      | 0 7      | 0     | 0        | 0     | 22    | 0       | 22    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 3     | 0         | 3     | 191   | 15        | 206   | 3     | 0         | 3     | 0       | 0       | 0  | 485                       | AM Peak                       | 1862 |
| 9:00 - 9 | ):15        | 23    | 0        | 23    | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 15    | 56     | 4 10       | 50        | 8      | 0 8      | 0     | 0        | 0     | 15    | 0       | 15    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 3     | 0         | 3     | 193   | 6         | 199   | 5     | 0         | 5     | 0       | 0       | 0  | 413                       |                               |      |
| 9:15 - 9 | ):30        | 24    | 0        | 24    | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 12    | 27     | 9 1:       | 36        | 3      | 1 4      | 0     | 0        | 0     | 24    | 0       | 24    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 2     | 0         | 2     | 169   | 4         | 173   | 4     | 0         | 4     | 0       | 0       | 0  | 367                       |                               |      |
| Tota     | ıl          | 190   | 2        | 192   | 1     | 0        | 1     | 1     | 0       | 1     | 0     | 0       | 0      | 2      | 0       | 2       | 13    | 350 4  | 19 13      | 99        | 58     | 1 59     | 0     | 0        | 0     | 136   | 5       | 141   | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 15    | 0         | 15    | 1308  | 76        | 1384  | 26    | 0         | 26    | 0       | 0       | 0  | 3220                      |                               |      |
| AM Pe    | eak         | 112   | 1        | 113   | 0     | 0        | 0     | 0     | 0       | 0     | 0     | 0       | 0      | 0      | 0       | 0       | 70    | 65 2   | 21 78      | 36        | 38     | 0 38     | 0     | 0        | 0     | 71    | 0       | 71    | 0      | 0       | 0       | 0    | 0        | 0     | 0     | 0        | 0     | 11    | 0         | 11    | 789   | 39        | 828   | 15    | 0         | 15    | 0       | 0       | 0  | 1862                      |                               |      |


| И             |       |         |      |        |          |        |        |         |      |         |        |         |       |         |        |         |         |        |      |         |         |       |       |           |            |       |          |       |       |         |       |       |         |       |       |         |       |      |         |         |       |         |       |       |         |         |       |            |     |                        |            |           |
|---------------|-------|---------|------|--------|----------|--------|--------|---------|------|---------|--------|---------|-------|---------|--------|---------|---------|--------|------|---------|---------|-------|-------|-----------|------------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|---------|-------|------|---------|---------|-------|---------|-------|-------|---------|---------|-------|------------|-----|------------------------|------------|-----------|
| Time          |       | Movemer | nt 1 |        | Moveme   | nt 2   |        | Moveme  | nt 3 |         | Movem  | nent 3A |       | Move    | nent 4 |         | Movem   | nent 5 |      | Mov     | ement 6 |       | Mo    | ovement 6 | 6 <b>A</b> | ı     | lovement | 7     | N     | Movemen | nt 8  | I     | Movemen | t 9   | ı     | Movemen | t 9A  |      | Movemer | nt 10   |       | Movemen | t 11  |       | Movemen | it 12   | M     | lovement 1 | 12A |                        |            |           |
| Period        | Light | Heavy   | Tota | l Ligh | nt Heavy | y Tota | l Ligh | t Heavy | Tota | al Ligh | nt Hea | avy To  | tal L | ight He | avy To | tal Liç | jht Hea | vy To  | otal | Light H | eavy    | Total | Light | Heavy     | Total      | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy   | Total | Ligh | t Heavy | y Total | Light | Heavy   | Total | Light | t Heavy | y Total | Light | Heavy      |     | Total of all Movements |            |           |
| 14:30 - 14:45 | 16    | 0       | 16   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | )       | 0     | 1       | ) 1    | I 16    | 65 4    | . 1    | 169  | 19      | 0       | 19    | 0     | 0         | 0          | 26    | 0        | 26    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 4    | 0       | 4       | 167   | 5       | 172   | 6     | 0       | 6       | 0     | 0          | 0   | 413                    | 14:30 - 15 | 5:30 1775 |
| 14:45 - 15:00 | 24    | 2       | 26   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | 0       | 0     | 0       | ) 0    | ) 15    | 55 13   | 3 1    | 168  | 10      | 0       | 10    | 0     | 0         | 0          | 30    | 0        | 30    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 2    | 0       | 2       | 181   | 7       | 188   | 3     | 1       | 4       | 0     | 0          | 0   | 428                    | 14:45 - 15 | 5:45 1827 |
| 15:00 - 15:15 | 30    | 0       | 30   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | 0       | 0     | 1       | ) 1    | 1 19    | 91 8    | 1      | 199  | 10      | 0       | 10    | 1     | 0         | 1          | 22    | 0        | 22    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 5    | 0       | 5       | 181   | 6       | 187   | 1     | 0       | 1       | 0     | 0          | 0   | 456                    | 15:00 - 16 | 6:00 178  |
| 15:15 - 15:30 | 19    | 0       | 19   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | 0       | 0     | 1       | ) 1    | 18      | 32 5    | 5 1    | 187  | 12      | 0       | 12    | 0     | 0         | 0          | 29    | 0        | 29    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 2    | 0       | 2       | 216   | 4       | 220   | 8     | 0       | 8       | 0     | 0          | 0   | 478                    | 15:15 - 16 | :15 174   |
| 15:30 - 15:45 | 24    | 0       | 24   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | 0       | 0     | 3       | ) 3    | 3 19    | 91 3    | 1      | 194  | 12      | 0       | 12    | 0     | 0         | 0          | 18    | 0        | 18    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 0    | 0       | o       | 193   | 10      | 203   | 11    | 0       | 11      | 0     | 0          | 0   | 465                    | 15:30 - 16 | :30   168 |
| 15:45 - 16:00 | 17    | 0       | 17   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | 0       | 0     | 0       | ) (    | ) 14    | 16 9    | 1      | 155  | 10      | 0       | 10    | 0     | 0         | 0          | 11    | 0        | 11    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 1    | 0       | 1       | 178   | 3       | 181   | 8     | 0       | 8       | 0     | 0          | 0   | 383                    | PM Pea     | ak 182    |
| 16:00 - 16:15 | 23    | 3       | 26   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | )       | 0     | 0       | ) (    | 17      | 76 2    | 1      | 178  | 11      | 0       | 11    | 0     | 0         | 0          | 25    | 0        | 25    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 3    | 0       | 3       | 167   | 3       | 170   | 7     | 0       | 7       | 0     | 0          | 0   | 420                    |            |           |
| 16:15 - 16:30 | 24    | 0       | 24   | 0      | 0        | 0      | 0      | 0       | 0    | 0       | (      | 0       | 0     | 1       | ) 1    | 1 14    | 11 6    | 1      | 147  | 12      | 0       | 12    | 0     | 0         | 0          | 24    | 0        | 24    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 3    | 0       | 3       | 202   | 2       | 204   | 6     | 0       | 6       | 0     | 0          | 0   | 421                    |            |           |
| Total         | 177   | 5       | 182  | 0      | 0        | 0      | 0      | 0       | 0    | 0       |        | 0       | 0     | 7       | ) 7    | 7 13    | 47 50   | 0 1:   | 397  | 96      | 0       | 96    | 1     | 0         | 1          | 185   | 0        | 185   | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 20   | 0       | 20      | 1485  | 40      | 1525  | 50    | 1       | 51      | 0     | 0          | 0   | 3464                   |            |           |
| PM Peak       | 97    | 2       | 99   | 0      | 0        | 0      | 0      | 0       | 0    | 0       |        | 0       | 0     | 5       | ) 5    | 5 7     | 19 29   | 9 7    | 748  | 44      | 0       | 44    | 1     | 0         | 1          | 99    | 0        | 99    | 0     | 0       | 0     | 0     | 0       | 0     | 0     | 0       | 0     | 9    | 0       | 9       | 771   | 27      | 798   | 23    | 1       | 24      | 0     | 0          | 0   | 1827                   |            |           |

| HOURLY FLOW |       |         |       |      |        |       |       |        |        |        |          |        |        |         |          |       |       |          |       |       |         |       |         |          |          |       |           |       |       |          |       |       |          |       |         |          |       |       |           |       |       |         |       |       |           |       |          |         |      |       |            |       |
|-------------|-------|---------|-------|------|--------|-------|-------|--------|--------|--------|----------|--------|--------|---------|----------|-------|-------|----------|-------|-------|---------|-------|---------|----------|----------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|---------|----------|-------|-------|-----------|-------|-------|---------|-------|-------|-----------|-------|----------|---------|------|-------|------------|-------|
| TIME PERIOD | N     | Movemen | t 1   |      | Moveme | nt 2  |       | Moveme | ent 3  |        | Moveme   | ent 3A |        | Mov     | vement 4 | l l   | М     | lovement | 5     | M     | ovement | 6     | Mov     | ement 6A | <b>\</b> | Мс    | ovement 7 | 7     | Me    | vement 8 | 8     | Мо    | vement 9 |       | Move    | ement 9A |       | Мо    | ovement ' | 10    | М     | ovement | 11    | М     | ovement 1 | 12    | Movem    | ent 12A |      | Gr    | rand Total |       |
|             | Light | Heavy   | Total | Ligh | Heavy  | Total | Light | t Heav | y Tota | al Lig | jht Heav | /у То  | otal L | Light I | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light I | leavy    | Total    | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light H | leavy    | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy     | Total | Light He | avy To  | otal | Light | Heavy      | Total |
| 7:30 - 8:30 | 82    | 2       | 84    | 1    | 0      | 1     | 1     | 0      | 1      | 0      | 0        |        | 0      | 2       | 0        | 2     | 662   | 25       | 687   | 29    | 0       | 29    | 0       | 0        | 0        | 58    | 5         | 63    | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 6     | 0         | 6     | 517   | 42      | 559   | 8     | 0         | 8     | 0        | 0 (     | 0    | 1366  | 74         | 1440  |
| 7:45 - 8:45 | 97    | 2       | 99    | 0    | 0      | 0     | 1     | 0      | 1      | 0      | 0        |        | 0      | 2       | 0        | 2     | 740   | 26       | 766   | 36    | 0       | 36    | 0       | 0        | 0        | 63    | 4         | 67    | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 7     | 0         | 7     | 664   | 40      | 704   | 12    | 0         | 12    | 0        | 0 (     | 0    | 1622  | 72         | 1694  |
| 8:00 - 9:00 | 111   | 2       | 113   | 0    | 0      | 0     | 1     | 0      | 1      | 0      | 0        |        | 0      | 2       | 0        | 2     | 790   | 23       | 813   | 35    | 0       | 35    | 0       | 0        | 0        | 69    | 0         | 69    | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 9     | 0         | 9     | 728   | 47      | 775   | 11    | 0         | 11    | 0        | 0       | 0    | 1756  | 72         | 1828  |
| 8:15 - 9:15 | 112   | 1       | 113   | 0    | 0      | 0     | 0     | 0      | 0      | 0      | 0        |        | 0      | 0       | 0        | 0     | 765   | 21       | 786   | 38    | 0       | 38    | 0       | 0        | 0        | 71    | 0         | 71    | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 11    | 0         | 11    | 789   | 39      | 828   | 15    | 0         | 15    | 0        | 0 (     | 0    | 1801  | 61         | 1862  |
| 8:30 - 9:30 | 108   | 0       | 108   | 0    | 0      | 0     | 0     | 0      | 0      | 0      | 0        |        | 0      | 0       | 0        | 0     | 688   | 24       | 712   | 29    | 1       | 30    | 0       | 0        | 0        | 78    | 0         | 78    | 0     | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 9     | 0         | 9     | 791   | 34      | 825   | 18    | 0         | 18    | 0        | 0       | 0    | 1721  | 59         | 1780  |

| OURLY FLOW    | Mov | vement 1 |      | Moveme | nt 2 |         | Movemer | nt 3 | M | ovement | 3A | M | ovement 4 |       | Moveme | ent 5 |       | Movemen | nt 6 | Mo | ovement 6A |        | Moveme | ent 7 |         | Movement 8 | 3 1 | Movemer     | nt 9 | l M   | lovement | 9A | Mo | vement 10 | 0  | Mc  | vement 1 | 1   | Mov | vement 1 | 2     | Move | ement 12 | 2A    |       | <b>Grand Total</b> |       |
|---------------|-----|----------|------|--------|------|---------|---------|------|---|---------|----|---|-----------|-------|--------|-------|-------|---------|------|----|------------|--------|--------|-------|---------|------------|-----|-------------|------|-------|----------|----|----|-----------|----|-----|----------|-----|-----|----------|-------|------|----------|-------|-------|--------------------|-------|
|               |     |          | otal |        |      | l Light |         |      |   | Heavy   |    |   |           | Total |        |       | Light |         |      |    | Heavy To   | tal Li | 000000 |       | l Light |            |     | Light Heavy |      | Light |          |    |    |           |    |     | Heavy    |     |     |          | Total |      |          | Total | Light | Heavy              | Total |
| 14:30 - 15:30 | 89  | 2        | 91   | 0 0    | 0    | 0       | 0       | 0    | 0 | 0       | 0  | 3 | 0         | 3     | 693 30 | 723   | 51    | 0       | 51   | 1  | 0 1        | 1      | 107 0  | 107   | 0       | 0          | 0   | 0 0         | 0    | 0     | 0        | 0  | 13 | 0         | 13 | 745 | 22       | 767 | 18  | 1        | 19    | 0    | 0        | 0     | 1720  | 55                 | 1775  |
| 14:45 - 15:45 | 97  | 2        | 99   | 0 0    | 0    | 0       | 0       | 0    | 0 | 0       | 0  | 5 | 0         | 5     | 719 29 | 748   | 44    | 0       | 44   | 1  | 0 1        | (      | 99 0   | 99    | 0       | 0          | 0   | 0 0         | 0    | 0     | 0        | 0  | 9  | 0         | 9  | 771 | 27       | 798 | 23  | 1        | 24    | 0    | 0        | 0     | 1768  | 59                 | 1827  |
| 15:00 - 16:00 | 90  | 0        | 90   | 0 0    | 0    | 0       | 0       | 0    | 0 | 0       | 0  | 5 | 0         | 5     | 710 25 | 735   | 44    | 0       | 44   | 1  | 0 1        |        | 80 0   | 80    | 0       | 0          | 0   | 0 0         | 0    | 0     | 0        | 0  | 8  | 0         | 8  | 768 | 23       | 791 | 28  | 0        | 28    | 0    | 0        | 0     | 1734  | 48                 | 1782  |
| 15:15 - 16:15 | 83  | 3        | 86   | 0 0    | 0    | 0       | 0       | 0    | 0 | 0       | 0  | 4 | 0         | 4     | 695 19 | 714   | 45    | 0       | 45   | 0  | 0 (        | ) {    | 83 0   | 83    | 0       | 0          | 0   | 0 0         | 0    | 0     | 0        | 0  | 6  | 0         | 6  | 754 | 20       | 774 | 34  | 0        | 34    | 0    | 0        | 0     | 1704  | 42                 | 1746  |
| 15:30 - 16:30 | 88  | 3        | 91   | 0 0    | 0    | 0       | 0       | 0    | 0 | 0       | 0  | 4 | 0         | 4     | 654 20 | 674   | 45    | 0       | 45   | 0  | 0 (        | )      | 78 0   | 78    | 0       | 0          | 0   | 0 0         | 0    | 0     | 0        | 0  | 7  | 0         | 7  | 740 | 18       | 758 | 32  | 0        | 32    | 0    | 0        | 0     | 1648  | 41                 | 1689  |



: MRCagney : ForsterTraffic Counts : Thursday, 02 March 2017 : Head Street & Beach Street



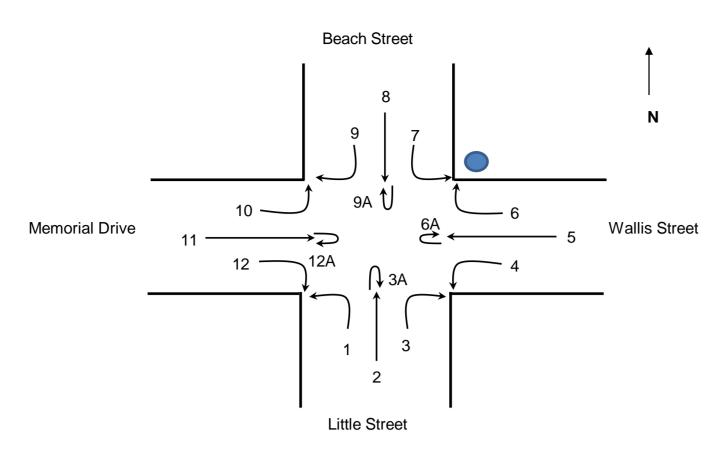


| АМ          |       |          |       |       |         |       |       |          |       |       |         |       |       |          |       |       |                   |       |       |           |       |       |         |       |       |           |       |       |          |       |       |           |       |          |         |        |         |         |         |         |         |         |          |           |          |          |       | _                      |                               |           |
|-------------|-------|----------|-------|-------|---------|-------|-------|----------|-------|-------|---------|-------|-------|----------|-------|-------|-------------------|-------|-------|-----------|-------|-------|---------|-------|-------|-----------|-------|-------|----------|-------|-------|-----------|-------|----------|---------|--------|---------|---------|---------|---------|---------|---------|----------|-----------|----------|----------|-------|------------------------|-------------------------------|-----------|
| Time        | IV    | Movement | t 1   |       | Movemen | t 2   | N     | Novement | t 3   | Me    | ovement | 3A    | ľ     | Movement | t 4   | N     | <i>l</i> lovement | 5     | M     | ovement ( | 6     | Mov   | ement 6 | 4     | M     | ovement ' | 7     | N     | Movement | 8     | Mo    | ovement 9 |       | Move     | ment 9A |        | Mover   | nent 10 |         | Movem   | nent 11 |         | Movem    | nent 12   |          | Movement | 12A   |                        |                               |           |
| Period      | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy             | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light He | eavy To | otal L | ight He | avy T   | otal Li | ght Hea | avy To  | otal Li | ight Hea | avy Tota  | al Light | Heavy    | Total | Total of all Movements | Peak Hour Vo<br>Determination | lume<br>n |
| 7:30 - 7:45 | 41    | 1        | 42    | 3     | 0       | 3     | 2     | 0        | 2     | 0     | 0       | 0     | 2     | 0        | 2     | 131   | 4                 | 135   | 3     | 1         | 4     | 0     | 0       | 0     | 1     | 0         | 1     | 6     | 0        | 6     | 12    | 1         | 13    | 0        | 0       | 0      | 3       | 0       | 3 9     | 91 1    | 1 1     | 102     | 27 1     | 1 28      | 1        | 0        | 1     | 342                    | 7:30 - 8:30                   | 1843      |
| 7:45 - 8:00 | 47    | 4        | 51    | 4     | 0       | 4     | 4     | 0        | 4     | 0     | 0       | 0     | 0     | 0        | 0     | 171   | 8                 | 179   | 3     | 0         | 3     | 0     | 0       | 0     | 5     | 0         | 5     | 3     | 1        | 4     | 13    | 1         | 14    | 0        | 0       | 0      | 5       | 0       | 5 1     | 24 9    | ) 1     | 133     | 44 1     | 1 45      | 0        | 0        | 0     | 447                    | 7:45 - 8:45                   | 2138      |
| 8:00 - 8:15 | 46    | 1        | 47    | 7     | 0       | 7     | 3     | 0        | 3     | 1     | 0       | 1     | 1     | 0        | 1     | 191   | 6                 | 197   | 4     | 0         | 4     | 0     | 0       | 0     | 1     | 1         | 2     | 3     | 0        | 3     | 7     | 0         | 7     | 0        | 0       | 0      | 13      | 1       | 14 1:   | 28 1    | 2 1     | 140     | 45 (     | ) 45      | 1        | 1        | 2     | 473                    | 8:00 - 9:00                   | 2313      |
| 8:15 - 8:30 | 69    | 1        | 70    | 3     | 0       | 3     | 9     | 0        | 9     | 1     | 0       | 1     | 3     | 0        | 3     | 227   | 7                 | 234   | 4     | 1         | 5     | 1     | 0       | 1     | 0     | 0         | 0     | 6     | 0        | 6     | 12    | 0         | 12    | 0        | 0       | 0      | 5       | 0       | 5 1     | 66 1    | 0 1     | 176     | 49 3     | <b>52</b> | 4        | 0        | 4     | 581                    | 8:15 - 9:15                   | 2404      |
| 8:30 - 8:45 | 76    | 1        | 77    | 4     | 0       | 4     | 5     | 0        | 5     | 0     | 0       | 0     | 2     | 0        | 2     | 213   | 5                 | 218   | 12    | 0         | 12    | 1     | 0       | 1     | 2     | 1         | 3     | 7     | 0        | 7     | 8     | 0         | 8     | 0        | 0       | 0      | 8       | 1       | 9 2     | 34 7    | 7 2     | 241     | 45       | 1 46      | 4        | 0        | 4     | 637                    | 8:30 - 9:30                   | 2323      |
| 8:45 - 9:00 | 81    | 2        | 83    | 8     | 0       | 8     | 6     | 0        | 6     | 0     | 0       | 0     | 1     | 0        | 1     | 224   | 5                 | 229   | 2     | 0         | 2     | 0     | 0       | 0     | 3     | 0         | 3     | 6     | 0        | 6     | 9     | 1         | 10    | 0        | 0       | 0      | 9       | 0       | 9 1     | 86 1    | 5 2     | 201     | 60       | 1 61      | 3        | 0        | 3     | 622                    | AM Peak                       | 2404      |
| 9:00 - 9:15 | 71    | 2        | 73    | 3     | 0       | 3     | 6     | 0        | 6     | 2     | 0       | 2     | 3     | 0        | 3     | 182   | 5                 | 187   | 5     | 0         | 5     | 1     | 0       | 1     | 4     | 0         | 4     | 5     | 0        | 5     | 11    | 0         | 11    | 0        | 0       | 0      | 9       | 1       | 10 1    | 88 7    | 7 1     | 195     | 55 (     | 55        | 4        | 0        | 4     | 564                    |                               |           |
| 9:15 - 9:30 | 65    | 1        | 66    | 4     | 0       | 4     | 4     | 0        | 4     | 2     | 0       | 2     | 3     | 1        | 4     | 146   | 7                 | 153   | 7     | 0         | 7     | 1     | 0       | 1     | 9     | 0         | 9     | 6     | 0        | 6     | 19    | 1         | 20    | 0        | 0       | 0      | 2       | 0       | 2 1     | 60 3    | 3 1     | 163     | 54       | 1 55      | 4        | 0        | 4     | 500                    | 1                             |           |
| Total       | 496   | 13       | 509   | 36    | 0       | 36    | 39    | 0        | 39    | 6     | 0       | 6     | 15    | 1        | 16    | 1485  | 47                | 1532  | 40    | 2         | 42    | 4     | 0       | 4     | 25    | 2         | 27    | 42    | 1        | 43    | 91    | 4         | 95    | 0        | 0       | 0      | 54      | 3       | 57 12   | 277 7   | 4 1:    | 351 3   | 379 8    | 387       | 21       | 1        | 22    | 4166                   |                               |           |
| AM Peak     | 297   | 6        | 303   | 18    | 0       | 18    | 26    | 0        | 26    | 3     | 0       | 3     | 9     | 0        | 9     | 846   | 22                | 868   | 23    | 1         | 24    | 3     | 0       | 3     | 9     | 1         | 10    | 24    | 0        | 24    | 40    | 1         | 41    | 0        | 0       | 0      | 31      | 2       | 33 7    | 74 3    | 9 8     | 813 2   | 209 5    | 5 214     | 15       | 0        | 15    | 2404                   |                               |           |

| PM            |       |         |       |      |         |      |        |          |       |        |        |         |       |       |          |       |       |         |       |       |         |       |       |          |       |       |          |       |       |          |       |       |         |       |       |          |             |       |         |       |       |          |       |       |          |       |       |           |     |                           |            |           |
|---------------|-------|---------|-------|------|---------|------|--------|----------|-------|--------|--------|---------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|----------|-------------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|-----------|-----|---------------------------|------------|-----------|
| Time          | N     | Movemer | nt 1  |      | Moveme  | nt 2 |        | Moveme   | nt 3  |        | Move   | ment 3A | 1     | Мо    | vement 4 | l l   | М     | ovement | : 5   | N     | Novemen | nt 6  |       | Movement | 6A    |       | Movement | t 7   | N     | lovement | 8     | М     | lovemen | t 9   | N     | lovement | : <b>9A</b> |       | Movemen | t 10  | N     | Movement | 11    | N     | Novement | t 12  | M     | ovement ' | 12A |                           |            |           |
| Period        | Light | Heavy   | Total | Ligh | t Heavy | Tota | l Ligh | it Heavy | y Tot | al Lig | ght Ho | eavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Total       | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     |     | Total of all<br>Movements |            |           |
| 14:30 - 14:45 | 68    | 3       | 71    | 9    | 0       | 9    | 10     | 0        | 10    | ) 3    | 3      | 0       | 3     | 4     | 0        | 4     | 177   | 4       | 181   | 4     | 0       | 4     | 1     | 0        | 1     | 8     | 0        | 8     | 3     | 0        | 3     | 17    | 0       | 17    | 0     | 0        | 0           | 10    | 0       | 10    | 156   | 5        | 161   | 39    | 0        | 39    | 2     | 0         | 2   | 523                       | 14:30 - 15 | 5:30 2327 |
| 14:45 - 15:00 | 83    | 1       | 84    | 9    | 0       | 9    | 7      | 0        | 7     | 2      | 2      | 0       | 2     | 4     | 0        | 4     | 176   | 14      | 190   | 4     | 0       | 4     | 1     | 0        | 1     | 7     | 0        | 7     | 9     | 0        | 9     | 17    | 0       | 17    | 0     | 0        | 0           | 12    | 0       | 12    | 175   | 8        | 183   | 43    | 1        | 44    | 4     | 0         | 4   | 577                       | 14:45 - 15 | 5:45 2408 |
| 15:00 - 15:15 | 80    | 2       | 82    | 6    | 0       | 6    | 5      | 0        | 5     | 6      | 6      | 0       | 6     | 4     | 0        | 4     | 209   | 9       | 218   | 4     | 0       | 4     | 3     | 0        | 3     | 5     | 0        | 5     | 4     | 0        | 4     | 11    | 0       | 11    | 1     | 0        | 1           | 15    | 0       | 15    | 172   | 6        | 178   | 55    | 0        | 55    | 5     | 0         | 5   | 602                       | 15:00 - 16 | 5:00 2360 |
| 15:15 - 15:30 | 93    | 2       | 95    | 8    | 0       | 8    | 7      | 0        | 7     | 3      | 3      | 0       | 3     | 4     | 0        | 4     | 198   | 5       | 203   | 3     | 0       | 3     | 0     | 0        | 0     | 7     | 0        | 7     | 3     | 0        | 3     | 10    | 0       | 10    | 0     | 0        | 0           | 8     | 0       | 8     | 210   | 4        | 214   | 53    | 1        | 54    | 6     | 0         | 6   | 625                       | 15:15 - 16 | 5:15 2311 |
| 15:30 - 15:45 | 90    | 1       | 91    | 8    | 0       | 8    | 3      | 0        | 3     | C      | )      | 0       | 0     | 8     | 0        | 8     | 187   | 3       | 190   | 1     | 0       | 1     | 1     | 0        | 1     | 5     | 0        | 5     | 5     | 0        | 5     | 10    | 0       | 10    | 0     | 0        | 0           | 11    | 0       | 11    | 195   | 10       | 205   | 63    | 0        | 63    | 3     | 0         | 3   | 604                       | 15:30 - 16 | 6:30 2255 |
| 15:45 - 16:00 | 75    | 0       | 75    | 5    | 0       | 5    | 7      | 0        | 7     | 3      | 3      | 0       | 3     | 3     | 0        | 3     | 162   | 8       | 170   | 3     | 1       | 4     | 1     | 0        | 1     | 2     | 0        | 2     | 3     | 0        | 3     | 13    | 0       | 13    | 0     | 0        | 0           | 11    | 0       | 11    | 178   | 3        | 181   | 42    | 2        | 44    | 7     | 0         | 7   | 529                       | PM Pea     | ak 2408   |
| 16:00 - 16:15 | 83    | 2       | 85    | 8    | 0       | 8    | 7      | 0        | 7     | C      | )      | 0       | 0     | 5     | 0        | 5     | 182   | 5       | 187   | 4     | 0       | 4     | 1     | 0        | 1     | 2     | 0        | 2     | 6     | 0        | 6     | 15    | 1       | 16    | 0     | 0        | 0           | 13    | 0       | 13    | 165   | 3        | 168   | 46    | 3        | 49    | 2     | 0         | 2   | 553                       |            |           |
| 16:15 - 16:30 | 97    | 1       | 98    | 7    | 0       | 7    | 8      | 0        | 8     | C      | )      | 0       | 0     | 3     | 0        | 3     | 167   | 6       | 173   | 3     | 0       | 3     | 2     | 0        | 2     | 6     | 0        | 6     | 0     | 0        | 0     | 12    | 0       | 12    | 1     | 0        | 1           | 14    | 0       | 14    | 197   | 2        | 199   | 35    | 2        | 37    | 6     | 0         | 6   | 569                       |            |           |
| Total         | 669   | 12      | 681   | 60   | 0       | 60   | 54     | 0        | 54    | 1 1    | 7      | 0       | 17    | 35    | 0        | 35    | 1458  | 54      | 1512  | 26    | 1       | 27    | 10    | 0        | 10    | 42    | 0        | 42    | 33    | 0        | 33    | 105   | 1       | 106   | 2     | 0        | 2           | 94    | 0       | 94    | 1448  | 41       | 1489  | 376   | 9        | 385   | 35    | 0         | 35  | 4582                      |            |           |
| PM Peak       | 346   | 6       | 352   | 31   | 0       | 31   | 22     | 0        | 22    | 2 1    | 1      | 0       | 11    | 20    | 0        | 20    | 770   | 31      | 801   | 12    | 0       | 12    | 5     | 0        | 5     | 24    | 0        | 24    | 21    | 0        | 21    | 48    | 0       | 48    | 1     | 0        | 1           | 46    | 0       | 46    | 752   | 28       | 780   | 214   | 2        | 216   | 18    | 0         | 18  | 2408                      |            |           |

| HOURLY FLOW |       |          |       |       |         |       |       |         |       |      |         |       |        |         |         |       |         |       |       |           |       |           |        |        |         |         |        |          |        |         |            |       |         |         |        |         |         |       |       |           |       |       |          |       |            |         |       |             |       |
|-------------|-------|----------|-------|-------|---------|-------|-------|---------|-------|------|---------|-------|--------|---------|---------|-------|---------|-------|-------|-----------|-------|-----------|--------|--------|---------|---------|--------|----------|--------|---------|------------|-------|---------|---------|--------|---------|---------|-------|-------|-----------|-------|-------|----------|-------|------------|---------|-------|-------------|-------|
| TIME PERIOD | N     | Movement | t 1   |       | Movemer | t 2   |       | Movemer | nt 3  |      | Movemen | t 3A  |        | Moveme  | nt 4    |       | Movemen | nt 5  | Me    | ovement 6 |       | Movem     | ent 6A |        | Movem   | ent 7   |        | Moveme   | nt 8   | N       | lovement 9 | 9     | Move    | ment 9A |        | Mov     | ement 1 | 0     | Mo    | ovement 1 | 1     | Мо    | vement 1 | 2     | Movemer    | t 12A   |       | Grand Total |       |
|             | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Ligh | t Heavy | Total | l Ligh | ht Heav | y Total | Light | t Heavy | Total | Light | Heavy     | Total | Light Hea | vy Tot | al Lig | ht Heav | y Total | al Lig | ght Heav | y Tota | l Light | Heavy      | Total | Light H | eavy T  | otal L | Light F | Heavy   | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light Heav | y Total | Light | Heavy       | Total |
| 7:30 - 8:30 | 203   | 7        | 210   | 17    | 0       | 17    | 18    | 0       | 18    | 2    | 0       | 2     | 6      | 0       | 6       | 720   | 25      | 745   | 14    | 2         | 16    | 1 (       | ) 1    | 7      | 1       | 8       | 1      | 18 1     | 19     | 44      | 2          | 46    | 0       | 0       | 0      | 26      | 1       | 27    | 509   | 42        | 551   | 165   | 5        | 170   | 6 1        | 7       | 1756  | 87          | 1843  |
| 7:45 - 8:45 | 238   | 7        | 245   | 18    | 0       | 18    | 21    | 0       | 21    | 2    | 0       | 2     | 6      | 0       | 6       | 802   | 26      | 828   | 23    | 1         | 24    | 2 (       | ) 2    | 8      | 2       | 10      | 1      | 19 1     | 20     | 40      | 1          | 41    | 0       | 0       | 0      | 31      | 2       | 33    | 652   | 38        | 690   | 183   | 5        | 188   | 9 1        | 10      | 2054  | 84          | 2138  |
| 8:00 - 9:00 | 272   | 5        | 277   | 22    | 0       | 22    | 23    | 0       | 23    | 2    | 0       | 2     | 7      | 0       | 7       | 855   | 23      | 878   | 22    | 1         | 23    | 2 (       | ) 2    | 6      | 2       | 8       | 2      | 22 0     | 22     | 36      | 1          | 37    | 0       | 0       | 0      | 35      | 2       | 37    | 714   | 44        | 758   | 199   | 5        | 204   | 12 1       | 13      | 2229  | 84          | 2313  |
| 8:15 - 9:15 | 297   | 6        | 303   | 18    | 0       | 18    | 26    | 0       | 26    | 3    | 0       | 3     | 9      | 0       | 9       | 846   | 22      | 868   | 23    | 1         | 24    | 3 (       | 3      | 9      | 1       | 10      | 2      | 24 0     | 24     | 40      | 1          | 41    | 0       | 0       | 0      | 31      | 2       | 33    | 774   | 39        | 813   | 209   | 5        | 214   | 15 0       | 15      | 2327  | 77          | 2404  |
| 8:30 - 9:30 | 293   | 6        | 299   | 19    | 0       | 19    | 21    | 0       | 21    | 4    | 0       | 4     | 9      | 1       | 10      | 765   | 22      | 787   | 26    | 0         | 26    | 3 (       | ) 3    | 18     | 3 1     | 19      | 2      | 24 0     | 24     | 47      | 2          | 49    | 0       | 0       | 0      | 28      | 2       | 30    | 768   | 32        | 800   | 214   | 3        | 217   | 15 0       | 15      | 2254  | 69          | 2323  |

| ME PERIOD    | Me    | ovement | t 1   | N     | ovement 2 |       | N     | /lovement | 3     | M     | ovement | : 3A  |       | Movemen | t 4   | N     | lovement | 5     | Move     | ment 6 |       | Mov     | ement 6A |        | Mover   | ment 7 |         | Moveme    | nt 8  |      | Movemen | nt 9  | Mo    | vement 9 | 9A    | Mo    | ovement 10 |       | Мо    | vement ' | 11    | Мо    | vement ' | 12    | Mov   | ement 12 | A     |       | Grand Total |    |
|--------------|-------|---------|-------|-------|-----------|-------|-------|-----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|----------|--------|-------|---------|----------|--------|---------|--------|---------|-----------|-------|------|---------|-------|-------|----------|-------|-------|------------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|-------------|----|
|              | Light | Heavy   | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light He | eavy 1 | Γotal | Light H | leavy To | tal Li | ght Hea | avy To | otal Li | ght Heavy | Total | Ligh | t Heavy | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy       | То |
| 1:30 - 15:30 | 324   | 8       | 332   | 32    | 0         | 32    | 29    | 0         | 29    | 14    | 0       | 14    | 16    | 0       | 16    | 760   | 32       | 792   | 15       | 0      | 15    | 5       | 0        | 5 2    | 27 (    | ) 2    | 27 1    | 9 0       | 19    | 55   | 0       | 55    | 1     | 0        | 1     | 45    | 0          | 45    | 713   | 23       | 736   | 190   | 2        | 192   | 17    | 0        | 17    | 2262  | 65          | 23 |
| l:45 - 15:45 | 346   | 6       | 352   | 31    | 0         | 31    | 22    | 0         | 22    | 11    | 0       | 11    | 20    | 0       | 20    | 770   | 31       | 801   | 12       | 0      | 12    | 5       | 0        | 5 2    | 24 (    | 2      | 24 2    | 21 0      | 21    | 48   | 0       | 48    | 1     | 0        | 1     | 46    | 0          | 46    | 752   | 28       | 780   | 214   | 2        | 216   | 18    | 0        | 18    | 2341  | 67          | 24 |
| 5:00 - 16:00 | 338   | 5       | 343   | 27    | 0         | 27    | 22    | 0         | 22    | 12    | 0       | 12    | 19    | 0       | 19    | 756   | 25       | 781   | 11       | 1      | 12    | 5       | 0        | 5 1    | 9 (     | ) 1    | 9 1     | 5 0       | 15    | 44   | 0       | 44    | 1     | 0        | 1     | 45    | 0          | 45    | 755   | 23       | 778   | 213   | 3        | 216   | 21    | 0        | 21    | 2303  | 57          | 23 |
| 5:15 - 16:15 | 341   | 5       | 346   | 29    | 0         | 29    | 24    | 0         | 24    | 6     | 0       | 6     | 20    | 0       | 20    | 729   | 21       | 750   | 11       | 1      | 12    | 3       | 0 :      | 3 1    | 6 (     | ) 1    | 6 1     | 7 0       | 17    | 48   | 1       | 49    | 0     | 0        | 0     | 43    | 0          | 43    | 748   | 20       | 768   | 204   | 6        | 210   | 18    | 0        | 18    | 2257  | 54          | 23 |
| :30 - 16:30  | 345   | 4       | 349   | 28    | 0         | 28    | 25    | 0         | 25    | 3     | 0       | 3     | 19    | 0       | 19    | 698   | 22       | 720   | 11       | 1      | 12    | 5       | 0        | 5 1    | 5 (     | ) 1    | 5 1     | 4 0       | 14    | 50   | 1       | 51    | 1     | 0        | 1     | 49    | 0          | 49    | 735   | 18       | 753   | 186   | 7        | 193   | 18    | 0        | 18    | 2202  | 53          | 22 |




Client : MRCagney

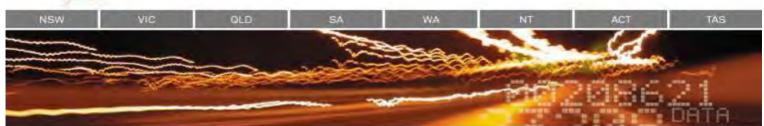
Job : ForsterTraffic Counts

Day/Date : Thursday, 02 March 201

Day/Date : Thursday, 02 March 2017
Survey Location : Beach Street & Little Street, Wallis Street & Memorial Drive
Weather : Fine






| AM       |     |        |          |       |      |         |       |       |         |       |       |        |        |        |          |                                         |      |         |          |       |       |          |       |         |         |       |       |         |       |       |         |       |       |           |       |         |         |       |         |          |       |       |          |       |       |           |       |       |          |    |                           |              |             |
|----------|-----|--------|----------|-------|------|---------|-------|-------|---------|-------|-------|--------|--------|--------|----------|-----------------------------------------|------|---------|----------|-------|-------|----------|-------|---------|---------|-------|-------|---------|-------|-------|---------|-------|-------|-----------|-------|---------|---------|-------|---------|----------|-------|-------|----------|-------|-------|-----------|-------|-------|----------|----|---------------------------|--------------|-------------|
| Tim      | •   | Мо     | vement ' | 1     |      | Movemen | t 2   | ı     | Movemer | nt 3  |       | Moveme | nt 3A  |        | Movem    | ent 4                                   |      | Mo      | vement 5 |       | Мо    | vement 6 |       | Mov     | ement 6 | A     | M     | ovement | 7     | N     | lovemen | t 8   | M     | ovement 9 | 9     | Move    | ment 9A |       | Mov     | vement 1 | 0     | Мо    | vement 1 | 1     | Мо    | vement 12 | 2     | Move  | ement 12 | 2A |                           |              |             |
| Perio    | d L | ight l | Heavy    | Total | Ligh | Heavy   | Total | Light | Heavy   | Total | Light | t Heav | y Tota | al Liç | ght Heav | vy To                                   | otal | Light I | Heavy    | Γotal | Light | Heavy    | Total | Light I | Heavy   | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy     | Total | Light H | eavy T  | Total | Light I | Heavy    | Total | Light | Heavy    | Total | Light | Heavy     | Total | Light | Heavy    |    | Total of all<br>Movements | Peak Hour Vo | olume<br>on |
| 7:30 - 1 | :45 | 3      | 0        | 3     | 37   | 1       | 38    | 0     | 0       | 0     | 0     | 0      | 0      | (      | 0        |                                         | 0    | 0       | 0        | 0     | 2     | 0        | 2     | 0       | 0       | 0     | 1     | 0       | 1     | 42    | 1       | 43    | 1     | 0         | 1     | 1       | 0       | 1     | 3       | 0        | 3     | 0     | 0        | 0     | 5     | 1         | 6     | 0     | 0        | 0  | 98                        | 7:30 - 8:30  | 529         |
| 7:45 - 8 | :00 | 12     | 1        | 13    | 46   | 2       | 48    | 3     | 0       | 3     | 1     | 0      | 1      |        | 0 0      |                                         | 0    | 0       | 0        | 0     | 1     | 1        | 2     | 0       | 0       | 0     | 1     | 0       | 1     | 55    | 1       | 56    | 2     | 1         | 3     | 0       | 0       | 0     | 3       | 1        | 4     | 0     | 0        | 0     | 7     | 1         | 8     | 0     | 0        | 0  | 139                       | 7:45 - 8:45  | 604         |
| 8:00 - 8 | :15 | 6      | 0        | 6     | 40   | 1       | 41    | 1     | 0       | 1     | 0     | 0      | 0      | ,      | 1 0      | ,                                       | 1    | 0       | 0        | 0     | 4     | 0        | 4     | 0       | 0       | 0     | 2     | 0       | 2     | 53    | 0       | 53    | 2     | 0         | 2     | 1       | 0       | 1     | 4       | 0        | 4     | 0     | 1        | 1     | 7     | 0         | 7     | 0     | 0        | 0  | 123                       | 8:00 - 9:00  | 685         |
| 8:15 - 8 | :30 | 13     | 0        | 13    | 67   | 1       | 68    | 4     | 0       | 4     | 0     | 0      | 0      |        | 1 0      |                                         | 1    | 0       | 0        | 0     | 3     | 0        | 3     | 0       | 0       | 0     | 6     | 0       | 6     | 51    | 4       | 55    | 5     | 0         | 5     | 1       | 0       | 1     | 5       | 0        | 5     | 1     | 0        | 1     | 6     | 1         | 7     | 0     | 0        | 0  | 169                       | 8:15 - 9:15  | 749         |
| 8:30 - 8 | :45 | 8      | 0        | 8     | 67   | 0       | 67    | 5     | 0       | 5     | 0     | 0      | 0      |        | 6 0      | *************************************** | 6    | 0       | 0        | 0     | 2     | 0        | 2     | 0       | 0       | 0     | 11    | 0       | 11    | 57    | 1       | 58    | 4     | 0         | 4     | 0       | 0       | 0     | 8       | 0        | 8     | 0     | 0        | 0     | 4     | 0         | 4     | 0     | 0        | 0  | 173                       | 8:30 - 9:30  | 766         |
| 8:45 - 9 | :00 | 17     | 0        | 17    | 80   | 2       | 82    | 8     | 0       | 8     | 0     | 0      | 0      |        | 3 0      |                                         | 8    | 0       | 0        | 0     | 3     | 0        | 3     | 0       | 0       | 0     | 18    | 0       | 18    | 66    | 0       | 66    | 1     | 0         | 1     | 0       | 0       | 0     | 8       | 0        | 8     | 1     | 0        | 1     | 8     | 0         | 8     | 0     | 0        | 0  | 220                       | AM Peak      | 766         |
| 9:00 - 9 | :15 | 12     | 0        | 12    | 62   | 2       | 64    | 1     | 0       | 1     | 0     | 0      | 0      |        | 4 2      | *************************************** | 6    | 0       | 0        | 0     | 6     | 0        | 6     | 0       | 0       | 0     | 11    | 0       | 11    | 69    | 1       | 70    | 6     | 0         | 6     | 0       | 0       | 0     | 3       | 0        | 3     | 2     | 0        | 2     | 6     | 0         | 6     | 0     | 0        | 0  | 187                       |              |             |
| 9:15 - 9 | :30 | 16     | 0        | 16    | 54   | 1       | 55    | 7     | 0       | 7     | 0     | 0      | 0      | 2      | 4 1      |                                         | 5    | 2       | 0        | 2     | 5     | 0        | 5     | 0       | 0       | 0     | 8     | 1       | 9     | 67    | 1       | 68    | 2     | 0         | 2     | 0       | 0       | 0     | 6       | 0        | 6     | 1     | 0        | 1     | 9     | 1         | 10    | 0     | 0        | 0  | 186                       |              |             |
| Tota     | I   | 87     | 1        | 88    | 453  | 10      | 463   | 29    | 0       | 29    | 1     | 0      | 1      | 2      | 4 3      | 2                                       | 27   | 2       | 0        | 2     | 26    | 1        | 27    | 0       | 0       | 0     | 58    | 1       | 59    | 460   | 9       | 469   | 23    | 1         | 24    | 3       | 0       | 3     | 40      | 1        | 41    | 5     | 1        | 6     | 52    | 4         | 56    | 0     | 0        | 0  | 1295                      |              |             |
| AM P     | ak  | 53     | 0        | 53    | 263  | 5       | 268   | 21    | 0       | 21    | 0     | 0      | 0      | 2      | 2 3      | 2                                       | 25   | 2       | 0        | 2     | 16    | 0        | 16    | 0       | 0       | 0     | 48    | 1       | 49    | 259   | 3       | 262   | 13    | 0         | 13    | 0       | 0       | 0     | 25      | 0        | 25    | 4     | 0        | 4     | 27    | 1         | 28    | 0     | 0        | 0  | 766                       |              |             |

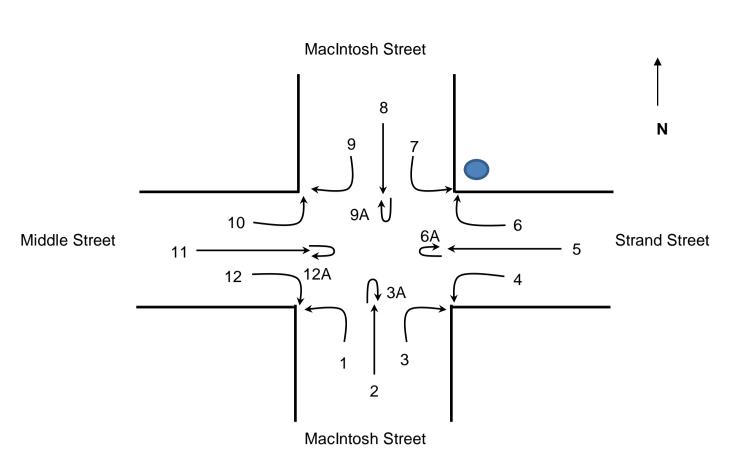
| Л             |       |         |       |      |         |       |       |         |       |       |         |       |       |          |       |       |          |       |       |        |       |       |           |       |       |           |       |       |           |       |       |          |       |       |          |       |       |          |         |         |          |        |          |           |            |        |          |            |      |               |     |
|---------------|-------|---------|-------|------|---------|-------|-------|---------|-------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|--------|-------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|---------|---------|----------|--------|----------|-----------|------------|--------|----------|------------|------|---------------|-----|
| Time          | ı     | Movemen | nt 1  |      | Movemen | t 2   |       | Movemen | it 3  | ı     | Movemen | nt 3A |       | Movement | : 4   | Mo    | vement 5 | 5     | Мо    | vement | 6     | M     | ovement 6 | SA S  | Мо    | ovement 7 | 7     | M     | ovement 8 |       | Мо    | vement 9 |       | Мо    | vement 9 | Α     | Мо    | vement 1 | 0       | Mover   | ment 11  |        | Mover    | ment 12   |            | Moven  | ment 12A |            |      |               |     |
| Period        | Light | Heavy   | Total | Ligh | Heavy   | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy  | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total L | ight He | eavy Tot | tal Li | ight Hea | eavy Tota | al Li      | ght He | leavy To | otal Total |      | Peak Hour Vo  |     |
| 14:30 - 14:45 | 9     | 0       | 9     | 62   | 3       | 65    | 4     | 0       | 4     | 0     | 0       | 0     | 12    | 0        | 12    | 1     | 0        | 1     | 3     | 0      | 3     | 0     | 0         | 0     | 14    | 0         | 14    | 51    | 0         | 51    | 1     | 0        | 1     | 1     | 0        | 1     | 7     | 0        | 7       | 0       | 0 0      | ,      | 6        | 0 6       | , (        | 0      | 0        | 0          | 174  | 14:30 - 15:30 | 814 |
| 14:45 - 15:00 | 7     | 0       | 7     | 69   | 1       | 70    | 6     | 0       | 6     | 0     | 0       | 0     | 10    | 1        | 11    | 0     | 0        | 0     | 4     | 0      | 4     | 1     | 0         | 1     | 9     | 0         | 9     | 71    | 1         | 72    | 4     | 0        | 4     | 0     | 0        | 0     | 8     | 0        | 8       | 0       | 0 0      | )      | 8        | 0 8       |            | 0      | 0        | 0          | 200  | 14:45 - 15:45 | 85  |
| 15:00 - 15:15 | 13    | 1       | 14    | 68   | 1       | 69    | 2     | 0       | 2     | 0     | 0       | 0     | 10    | 0        | 10    | 0     | 0        | 0     | 3     | 0      | 3     | 1     | 0         | 1     | 17    | 0         | 17    | 67    | 0         | 67    | 2     | 0        | 2     | 0     | 0        | 0     | 8     | 1        | 9       | 0       | 0 0      | )      | 7        | 0 7       |            | 0      | 0        | 0          | 201  | 15:00 - 16:00 | 85  |
| 15:15 - 15:30 | 18    | 0       | 18    | 80   | 2       | 82    | 6     | 0       | 6     | 0     | 0       | 0     | 7     | 0        | 7     | 1     | 0        | 1     | 8     | 0      | 8     | 0     | 0         | 0     | 5     | 0         | 5     | 81    | 1         | 82    | 6     | 0        | 6     | 0     | 0        | 0     | 10    | 0        | 10      | 0       | 0 0      |        | 14       | 0 14      | 4          | 0      | 0        | 0          | 239  | 15:15 - 16:15 | , 8 |
| 15:30 - 15:45 | 7     | 0       | 7     | 81   | 0       | 81    | 2     | 0       | 2     | 0     | 0       | 0     | 6     | 0        | 6     | 0     | 0        | 0     | 2     | 0      | 2     | 0     | 0         | 0     | 8     | 0         | 8     | 81    | 0         | 81    | 3     | 0        | 3     | 0     | 0        | 0     | 8     | 1        | 9       | 4       | 0 4      | 1      | 13       | 0 13      | 3          | 0      | 0        | 0          | 216  | 15:30 - 16:30 | , 7 |
| 15:45 - 16:00 | 16    | 0       | 16    | 58   | 1       | 59    | 4     | 0       | 4     | 0     | 0       | 0     | 9     | 0        | 9     | 1     | 0        | 1     | 5     | 0      | 5     | 0     | 0         | 0     | 12    | 0         | 12    | 58    | 2         | 60    | 3     | 0        | 3     | 0     | 0        | 0     | 10    | 0        | 10      | 1       | 0 1      |        | 14       | 0 14      | 4 (        | 0      | 0        | 0          | 194  | PM Peak       | 8   |
| 16:00 - 16:15 | 11    | 0       | 11    | 76   | 1       | 77    | 2     | 0       | 2     | 0     | 0       | 0     | 14    | 0        | 14    | 1     | 0        | 1     | 0     | 0      | 0     | 0     | 0         | 0     | 5     | 0         | 5     | 61    | 2         | 63    | 1     | 0        | 1     | 1     | 0        | 1     | 11    | 0        | 11      | 1       | 0 1      |        | 10       | 0 10      | <b>5</b> ( | 0      | 0        | 0          | 197  |               |     |
| 16:15 - 16:30 | 8     | 0       | 8     | 75   | 1       | 76    | 3     | 0       | 3     | 0     | 0       | 0     | 9     | 0        | 9     | 0     | 0        | 0     | 6     | 0      | 6     | 0     | 0         | 0     | 7     | 0         | 7     | 49    | 2         | 51    | 0     | 0        | 0     | 0     | 0        | 0     | 12    | 0        | 12      | 0       | 0 0      | )      | 8        | 0 8       | , (        | 0      | 0        | 0          | 180  |               |     |
| Total         | 89    | 1       | 90    | 569  | 10      | 579   | 29    | 0       | 29    | 0     | 0       | 0     | 77    | 1        | 78    | 4     | 0        | 4     | 31    | 0      | 31    | 2     | 0         | 2     | 77    | 0         | 77    | 519   | 8         | 527   | 20    | 0        | 20    | 2     | 0        | 2     | 74    | 2        | 76      | 6       | 0 6      | 5      | 80 (     | 0 80      | ٠          | 0      | 0        | 0          | 1601 |               |     |
| PM Peak       | 45    | 1       | 46    | 298  | 4       | 302   | 16    | 0       | 16    | 0     | 0       | 0     | 33    | 1        | 34    | 1     | 0        | 1     | 17    | 0      | 17    | 2     | 0         | 2     | 39    | 0         | 39    | 300   | 2         | 302   | 15    | 0        | 15    | 0     | 0        | 0     | 34    | 2        | 36      | 4       | 0 4      |        | 42 (     | 0 42      | 2          | 0      | 0        | 0          | 856  |               |     |

| IOURLY FLOW |       |         |       |       |          |       |       |          |       |       |         |       |       |         |       |         |        |      |       |         |       |       |           |       |       |         |       |       |           |       |            |         |       |         |         | _     |          |       |       |         |       |       |         |         |       |          |       |       |             |          |
|-------------|-------|---------|-------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|---------|--------|------|-------|---------|-------|-------|-----------|-------|-------|---------|-------|-------|-----------|-------|------------|---------|-------|---------|---------|-------|----------|-------|-------|---------|-------|-------|---------|---------|-------|----------|-------|-------|-------------|----------|
| TIME PERIOD |       | Movemen | t 1   |       | Movement | 2     |       | Movement | t 3   | N     | lovemen | 3A    |       | Movemer | t 4   | Mov     | ment 5 |      | Mc    | ovement | 6     | Mo    | ovement 6 | A     | M     | ovement | 7     | M     | ovement 8 | 8     | Moveme     | ent 9   | N     | Movemen | nt 9A   | N     | Movement | 10    | l     | Movemen | t 11  | l     | Movemen | nt 12   | M     | lovement | 12A   |       | Grand Total | <u>/</u> |
|             | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light H | eavy T | otal | Light | Heavy   | Total | Light | Heavy     | Total | Light | Heavy   | Total | Light | Heavy     | Total | Light Heav | y Total | Light | Heavy   | / Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | / Total | Light | Heavy    | Total | Light | Heavy       | y Total  |
| 7:30 - 8:30 | 34    | 1       | 35    | 190   | 5        | 195   | 8     | 0        | 8     | 1     | 0       | 1     | 2     | 0       | 2     | 0       | 0      | 0    | 10    | 1       | 11    | 0     | 0         | 0     | 10    | 0       | 10    | 201   | 6         | 207   | 10 1       | 11      | 3     | 0       | 3       | 15    | 1        | 16    | 1     | 1       | 2     | 25    | 3       | 28      | 0     | 0        | 0     | 510   | 19          | 529      |
| 7:45 - 8:45 | 39    | 1       | 40    | 220   | 4        | 224   | 13    | 0        | 13    | 1     | 0       | 1     | 8     | 0       | 8     | 0       | 0      | 0    | 10    | 1       | 11    | 0     | 0         | 0     | 20    | 0       | 20    | 216   | 6         | 222   | 13 1       | 14      | 2     | 0       | 2       | 20    | 1        | 21    | 1     | 1       | 2     | 24    | 2       | 26      | 0     | 0        | 0     | 587   | 17          | 604      |
| 8:00 - 9:00 | 44    | 0       | 44    | 254   | 4        | 258   | 18    | 0        | 18    | 0     | 0       | 0     | 16    | 0       | 16    | 0       | 0      | 0    | 12    | 0       | 12    | 0     | 0         | 0     | 37    | 0       | 37    | 227   | 5         | 232   | 12 0       | 12      | 2     | 0       | 2       | 25    | 0        | 25    | 2     | 1       | 3     | 25    | 1       | 26      | 0     | 0        | 0     | 674   | 11          | 685      |
| 8:15 - 9:15 | 50    | 0       | 50    | 276   | 5        | 281   | 18    | 0        | 18    | 0     | 0       | 0     | 19    | 2       | 21    | 0       | 0      | 0    | 14    | 0       | 14    | 0     | 0         | 0     | 46    | 0       | 46    | 243   | 6         | 249   | 16 0       | 16      | 1     | 0       | 1       | 24    | 0        | 24    | 4     | 0       | 4     | 24    | 1       | 25      | 0     | 0        | 0     | 735   | 14          | 749      |
| 8:30 - 9:30 | 53    | 0       | 53    | 263   | 5        | 268   | 21    | 0        | 21    | 0     | 0       | 0     | 22    | 3       | 25    | 2       | 0      | 2    | 16    | 0       | 16    | 0     | 0         | 0     | 48    | 1       | 49    | 259   | 3         | 262   | 13 0       | 13      | 0     | 0       | 0       | 25    | 0        | 25    | 4     | 0       | 4     | 27    | 1       | 28      | 0     | 0        | 0     | 753   | 13          | 766      |

| E PERIOD   | Me    | ovement | 1     | Mo    | ement 2 |       | Mo    | ovement 3 | 3     | Mo    | ovement : | 3A    | Mo    | vement 4 |       | Мо    | vement 5 | 5     | Mo      | vement 6 | 6     | Mo    | ovement 6/ | ١     | Мо    | ovement 7 |       | Мо    | vement 8 | В     | Move     | nent 9   | N       | lovement | 9A    | M     | lovement | 10    | М     | ovement | 11    | M     | ovement | 12    | N     | Movement | . 12A   |       | Grand Total |      |
|------------|-------|---------|-------|-------|---------|-------|-------|-----------|-------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|---------|----------|-------|-------|------------|-------|-------|-----------|-------|-------|----------|-------|----------|----------|---------|----------|-------|-------|----------|-------|-------|---------|-------|-------|---------|-------|-------|----------|---------|-------|-------------|------|
|            | Light | Heavy   | Total | Light | leavy   | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light I | Heavy    | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light | Heavy    | Total | Light He | vy Total | l Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy   | Total | Light | Heavy    | y Total | Light | Heavy       | у То |
| 30 - 15:30 | 47    | 1       | 48    | 279   | 7       | 286   | 18    | 0         | 18    | 0     | 0         | 0     | 39    | 1        | 40    | 2     | 0        | 2     | 18      | 0        | 18    | 2     | 0          | 2     | 45    | 0         | 45    | 270   | 2        | 272   | 13       | 13       | 1       | 0        | 1     | 33    | 1        | 34    | 0     | 0       | 0     | 35    | 0       | 35    | 0     | 0        | 0       | 802   | 12          | 8    |
| 45 - 15:45 | 45    | 1       | 46    | 298   | 4       | 302   | 16    | 0         | 16    | 0     | 0         | 0     | 33    | 1        | 34    | 1     | 0        | 1     | 17      | 0        | 17    | 2     | 0          | 2     | 39    | 0         | 39    | 300   | 2        | 302   | 15       | 15       | 0       | 0        | 0     | 34    | 2        | 36    | 4     | 0       | 4     | 42    | 0       | 42    | 0     | 0        | 0       | 846   | 10          | 8    |
| 00 - 16:00 | 54    | 1       | 55    | 287   | 4       | 291   | 14    | 0         | 14    | 0     | 0         | 0     | 32    | 0        | 32    | 2     | 0        | 2     | 18      | 0        | 18    | 1     | 0          | 1     | 42    | 0         | 42    | 287   | 3        | 290   | 14       | 14       | 0       | 0        | 0     | 36    | 2        | 38    | 5     | 0       | 5     | 48    | 0       | 48    | 0     | 0        | 0       | 840   | 10          | 8    |
| 15 - 16:15 | 52    | 0       | 52    | 295   | 4       | 299   | 14    | 0         | 14    | 0     | 0         | 0     | 36    | 0        | 36    | 3     | 0        | 3     | 15      | 0        | 15    | 0     | 0          | 0     | 30    | 0         | 30    | 281   | 5        | 286   | 13       | 13       | 1       | 0        | 1     | 39    | 1        | 40    | 6     | 0       | 6     | 51    | 0       | 51    | 0     | 0        | 0       | 836   | 10          | 8    |
| 30 - 16:30 | 42    | 0       | 42    | 290   |         | 293   | 11    | 0         | 11    | 0     | 0         | 0     | 38    | 0        | 38    | 2     | 0        | 2     | 13      | 0        | 13    | 0     | 0          | 0     | 32    | 0         | 32    | 249   | 6        | 255   | 7        | 7        | 1       | 0        | 1     | 41    | 1        | 42    | 6     | 0       | 6     | 45    | 0       | 45    | 0     | 0        | 0       | 777   | 10          | 7    |






## **Forster Traffic Counts**

Tuesday, 7 March 2017

| JOB NUMBER       | 7755                                               |
|------------------|----------------------------------------------------|
| JOB NAME         | Forster Traffic Counts                             |
| CLIENT           | MRCagney                                           |
| SURVEY LOCATIONS | 7. MacIntosh Street, Middle Street & Strand Street |
| SURVEY TYPE      | Intersection Count                                 |
| SURVEY DATE      | Tuesday, 7 March 2017                              |
| SURVEY PERIOD    | 07:30 AM - 09:30 AM<br>02:30 PM - 04:30 PM         |
| WEATHER          | Fine                                               |



: MRCagney
: ForsterTraffic Counts
: Tuesday, 07 March 2017
: MacIntosh Street, Middle Street & Strand Street





| Time        |       | Movemen | nt 1 |        | Moveme  | nt 2   |        | Move  | ment 3 |      | Мо    | vement 3A | 4     | Мс    | vement 4 | _     | М     | lovement | 5     | N     | lovement | 6     | N     | Novement 6 | 6A    | М     | ovement : | 7     | N     | ovement 8 | 3     | М     | lovement 9 |       | Мо    | vement 9A | 4     | Mov     | ement 10 |       | Мо    | vement 1 | 1     | Move    | ement 12 |       | Mç    | vement 1 | 12A   |                        |                                  |                 |
|-------------|-------|---------|------|--------|---------|--------|--------|-------|--------|------|-------|-----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|------------|-------|-------|-----------|-------|-------|-----------|-------|-------|------------|-------|-------|-----------|-------|---------|----------|-------|-------|----------|-------|---------|----------|-------|-------|----------|-------|------------------------|----------------------------------|-----------------|
| Period      | Light | Heavy   | Tota | I Ligh | t Heavy | y Tota | al Lig | ht He | avy 1  | otal | Light | Heavy     | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light I | Heavy    | Total | Light | Heavy    | Total | Light H | leavy    | Total | Light | Heavy    | Total | Total of all Movements | Peak Hour Volum<br>Determination | me              |
| 7:30 - 7:45 | 4     | 1       | 5    | 104    | 4       | 108    | 3 10   | )     | 1      | 11   | 0     | 0         | 0     | 11    | 1        | 12    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 3     | 2         | 5     | 72    | 6         | 78    | 0     | 0          | 0     | 0     | 0         | 0     | 2       | 0        | 2     | 0     | 0        | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 221                    | 7:30 - 8:30                      | 120             |
| 7:45 - 8:00 | 6     | 0       | 6    | 123    | 0       | 123    | 3 24   | 1     | 1      | 25   | 0     | 0         | 0     | 21    | 1        | 22    | 1     | 0        | 1     | 0     | 0        | 0     | 0     | 0          | 0     | 4     | 1         | 5     | 121   | 2         | 123   | 0     | 0          | 0     | 0     | 0         | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 305                    | 7:45 - 8:45                      | 150             |
| 8:00 - 8:15 | 7     | 1       | 8    | 137    | 6       | 143    | 3 21   |       | 1      | 22   | 0     | 0         | 0     | 21    | 1        | 22    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 4     | 0         | 4     | 127   | 7         | 134   | 0     | 0          | 0     | 0     | 0         | 0     | 2       | 0        | 2     | 0     | 0        | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 335                    | 8:00 - 9:00                      | 17 <sup>-</sup> |
| 8:15 - 8:30 | 14    | 0       | 14   | 140    | 7       | 147    | 49     | 9     | 2      | 51   | 0     | 0         | 0     | 22    | 2        | 24    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 15    | 0         | 15    | 147   | 8         | 155   | 0     | 0          | 0     | 0     | 0         | 0     | 2       | 0        | 2     | 0     | 0        | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 408                    | 8:15 - 9:15                      | 179             |
| 8:30 - 8:45 | 18    | 0       | 18   | 145    | 4       | 149    | 67     | 7     | 2      | 69   | 0     | 0         | 0     | 37    | 1        | 38    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 10    | 1         | 11    | 163   | 7         | 170   | 0     | 0          | 0     | 0     | 0         | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 1       | 0        | 1     | 0     | 0        | 0     | 456                    | 8:30 - 9:30                      | 178             |
| 8:45 - 9:00 | 18    | 0       | 18   | 149    | 11      | 160    | 56     | 6     | 1      | 57   | 0     | 0         | 0     | 35    | 3        | 38    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 12    | 1         | 13    | 226   | 8         | 234   | 0     | 0          | 0     | 0     | 0         | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 520                    | AM Peak                          | 179             |
| 9:00 - 9:15 | 16    | 0       | 16   | 120    | 8       | 128    | 3 40   | )     | 0      | 40   | 0     | 0         | 0     | 34    | 0        | 34    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 11    | 1         | 12    | 171   | 7         | 178   | 0     | 0          | 0     | 0     | 0         | 0     | 1       | 0        | 1     | 0     | 0        | 0     | 0       | 0        | 0     | 0     | 0        | 0     | 409                    |                                  | <u> </u>        |
| 9:15 - 9:30 | 16    | 0       | 16   | 158    | 13      | 171    | 24     | 1     | 0      | 24   | 0     | 0         | 0     | 19    | 0        | 19    | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 16    | 0         | 16    | 142   | 7         | 149   | 0     | 0          | 0     | 0     | 0         | 0     | 1       | 0        | 1     | 0     | 0        | 0     | 1       | 0        | 1     | 0     | 0        | 0     | 397                    |                                  |                 |
| Total       | 99    | 2       | 101  | 1076   | 53      | 1129   | 9 29   | 1     | 8      | 299  | 0     | 0         | 0     | 200   | 9        | 209   | 1     | 0        | 1     | 0     | 0        | 0     | 0     | 0          | 0     | 75    | 6         | 81    | 1169  | 52        | 1221  | 0     | 0          | 0     | 0     | 0         | 0     | 8       | 0        | 8     | 0     | 0        | 0     | 2       | 0        | 2     | 0     | 0        | 0     | 3051                   |                                  |                 |
| AM Peak     | 66    | 0       | 66   | 554    | 30      | 584    | 21     | 2     | 5      | 217  | 0     | 0         | 0     | 128   | 6        | 134   | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 48    | 3         | 51    | 707   | 30        | 737   | 0     | 0          | 0     | 0     | 0         | 0     | 3       | 0        | 3     | 0     | 0        | 0     | 1       | 0        | 1     | 0     | 0        | 0     | 1793                   |                                  |                 |

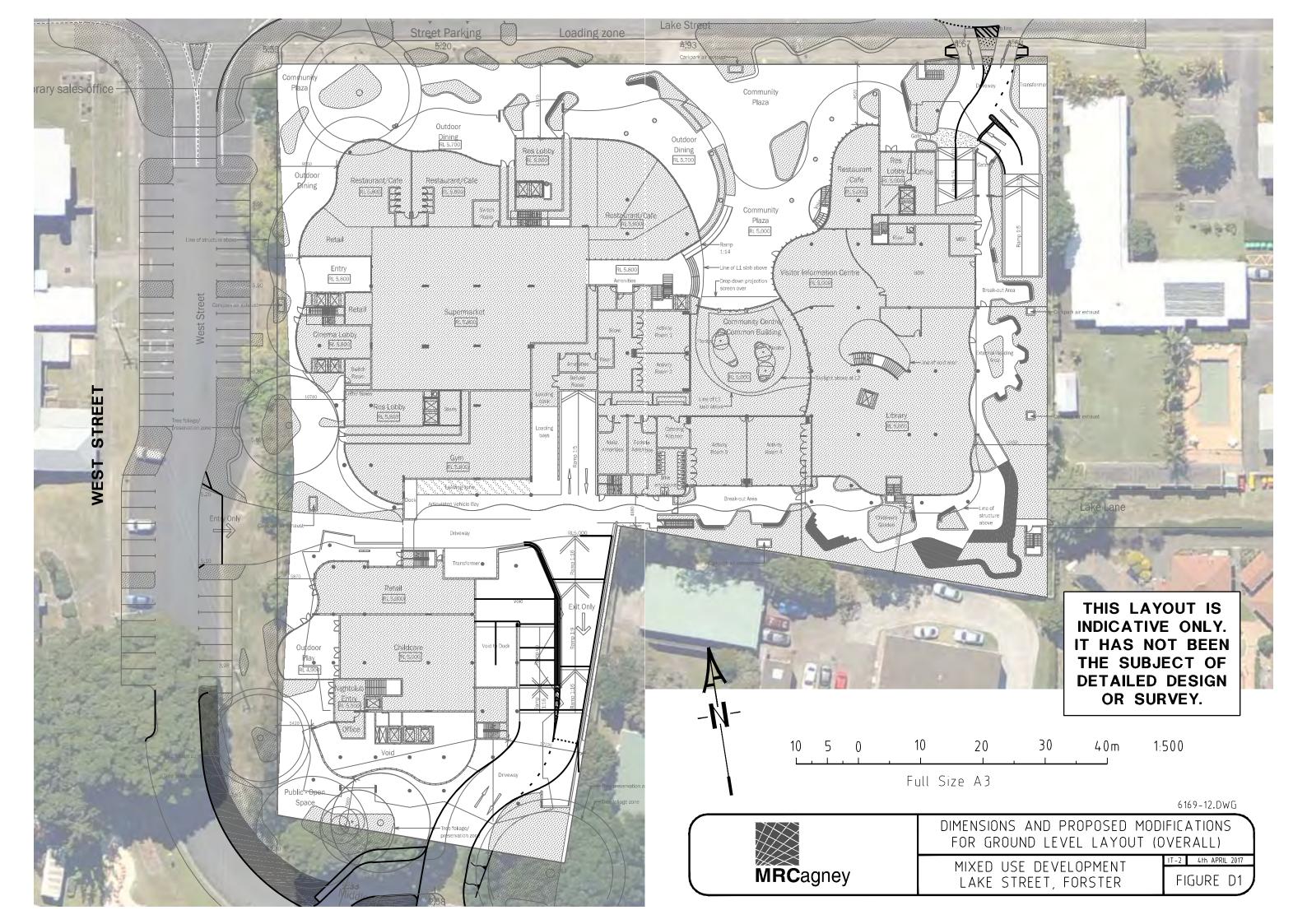
| ne    |       | Movement | 1     | Mov     | ement 2 |         | Movem     | ent 3  |         | Movement | 3A    |       | Movement - | 4     | Мо    | ovement 5 | 5     | Movem      | ent 6   |         | Movement | 6A    | Move     | ment 7  |             | Moveme    | ent 8   | Move     | ment 9     | M     | lovement 9 | 9A    | Mov     | ement 10 |         | Movem     | ent 11   |       | Movement | 12    | Move    | ment 12A |                    |      |                                  |
|-------|-------|----------|-------|---------|---------|---------|-----------|--------|---------|----------|-------|-------|------------|-------|-------|-----------|-------|------------|---------|---------|----------|-------|----------|---------|-------------|-----------|---------|----------|------------|-------|------------|-------|---------|----------|---------|-----------|----------|-------|----------|-------|---------|----------|--------------------|------|----------------------------------|
| iod   | Light | Heavy    | Total | Light H | leavy   | Total I | ight Heav | y Tota | al Ligi | ht Heavy | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light Heav | y Total | l Light | t Heavy  | Total | Light He | eavy To | otal Li     | ight Heav | y Total | Light He | avy Tota   | Light | Heavy      | Total | Light I | Heavy    | Total L | Light Hea | vy Total | Light | Heavy    | Total | Light F | leavy To | otal Total<br>Move |      | Peak Hour Volun<br>Determination |
| 14:45 | 11    | 0        | 11    | 138     | 6       | 144     | 43 0      | 43     | 0       | 0        | 0     | 27    | 1          | 28    | 0     | 0         | 0     | 0 0        | 0       | 0       | 0        | 0     | 11       | 0 1     | <b>11</b> 1 | 166 4     | 170     | 0        | 0 <b>0</b> | 0     | 0          | 0     | 1       | 0        | 1       | 0 0       | 0        | 0     | 0        | 0     | 0       | 0        | 0                  | 408  | 14:30 - 15:30                    |
| 15:00 | 8     | 0        | 8     | 144     | 10      | 154     | 57 2      | 59     | 0       | 0        | 0     | 28    | 0          | 28    | 0     | O         | 0     | 0 0        | o       | 0       | 0        | O     | 9        | 0       | 9 1         | 159 8     | 167     | 0        | 0 <b>0</b> | 0     | 0          | 0     | 2       | 0        | 2       | 0 0       | 0        | 0     | 0        | 0     | 0       | 0        | 0                  | 427  | 14:45 - 15:45                    |
| 15:15 | 10    | 0        | 10    | 140     | 3       | 143     | 28 0      | 28     | 0       | 0        | 0     | 73    | 2          | 75    | 0     | 0         | 0     | 0 0        | O       | 0       | 0        | O     | 14       | 0 1     | 14 2        | 218 5     | 223     | 0        | 0 <b>0</b> | 0     | 0          | 0     | 2       | 0        | 2       | 0 0       | 0        | 0     | 0        | 0     | 0       | 0        | 0                  | 495  | 15:00 - 16:00                    |
| 15:30 | 11    | 0        | 11    | 152     | 4       | 156     | 40 0      | 40     | 1       | 0        | 1     | 39    | 4          | 43    | 0     | 0         | 0     | 0 0        | o       | 0       | 0        | O     | 10       | 0 1     | <b>10</b> 1 | 171 7     | 178     | 0        | o <b>o</b> | 0     | 0          | 0     | 0       | 0        | 0       | 1 0       | 1        | 0     | 0        | 0     | 0       | 0        | 0                  | 440  | 15:15 - 16:15                    |
| 15:45 | 10    | 0        | 10    | 149     | 6       | 155     | 35 0      | 35     | 0       | 0        | 0     | 32    | 0          | 32    | 0     | 0         | 0     | 0 0        | 0       | 0       | 0        | 0     | 10       | 2 1     | <b>12</b> 1 | 175 7     | 182     | 0        | 0 <b>0</b> | 0     | 0          | 0     | 0       | 0        | 0       | 0 0       | 0        | 0     | 0        | 0     | 0       | 0        | 0                  | 426  | 15:30 - 16:30                    |
| 16:00 | 5     | 0        | 5     | 122     | 3       | 125     | 37 1      | 38     | 1       | 0        | 1     | 30    | 0          | 30    | 0     | O         | o     | 0 0        | o       | 0       | 0        | o     | 11       | 0 1     | <b>11</b> 1 | 144 3     | 147     | 0        | o <b>o</b> | 0     | 0          | 0     | 0       | 0        | 0       | 0 0       | 0        | 1     | 0        | 1     | 0       | 0        | 0                  | 358  | PM Peak                          |
| 16:15 | 6     | 0        | 6     | 173     | 1       | 174     | 38 1      | 39     | 0       | 0        | 0     | 32    | 0          | 32    | 0     | 0         | 0     | 0 0        | 0       | 0       | 0        | 0     | 18       | 0 1     | <b>18</b> 1 | 149 3     | 152     | 0        | O <b>0</b> | 0     | 0          | 0     | 1       | 0        | 1       | 0 0       | 0        | 0     | 0        | 0     | 0       | 0        | 0                  | 422  |                                  |
| 16:30 | 3     | 1        | 4     | 150     | 1       | 151     | 33 0      | 33     | 1       | 0        | 1     | 22    | 0          | 22    | 0     | 0         | 0     | 0 0        | 0       | 0       | 0        | 0     | 11       | 0 1     | <b>11</b> 1 | 166 4     | 170     | 0        | o <b>o</b> | 0     | 0          | 0     | 0       | 0        | 0       | 0 0       | 0        | 0     | 0        | 0     | 0       | 0        | 0                  | 392  |                                  |
| al    | 64    | 1        | 65    | 1168    | 34      | 1202    | 311 4     | 315    | 3       | 0        | 3     | 283   | 7          | 290   | 0     | 0         | 0     | 0 0        | 0       | 0       | 0        | 0     | 94       | 2 9     | 96 1        | 348 41    | 1389    | 0        | 0 0        | 0     | 0          | 0     | 6       | 0        | 6       | 1 0       | 1        | 1     | 0        | 1     | 0       | 0        | 0                  | 3368 | 1                                |
| ak    | 39    | 0        | 39    | 585     | 23      | 608     | 160 2     | 162    | 1       | 0        | 1     | 172   | 6          | 178   | 0     | 0         | 0     | 0 0        | 0       | 0       | 0        | 0     | 43       | 2 4     | 45 7        | 723 27    | 750     | 0        | 0 0        | 0     | 0          | 0     | 4       | 0        | 4       | 1 0       | 1        | 0     | 0        | 0     | 0       | 0        | 0                  | 1788 | 1                                |

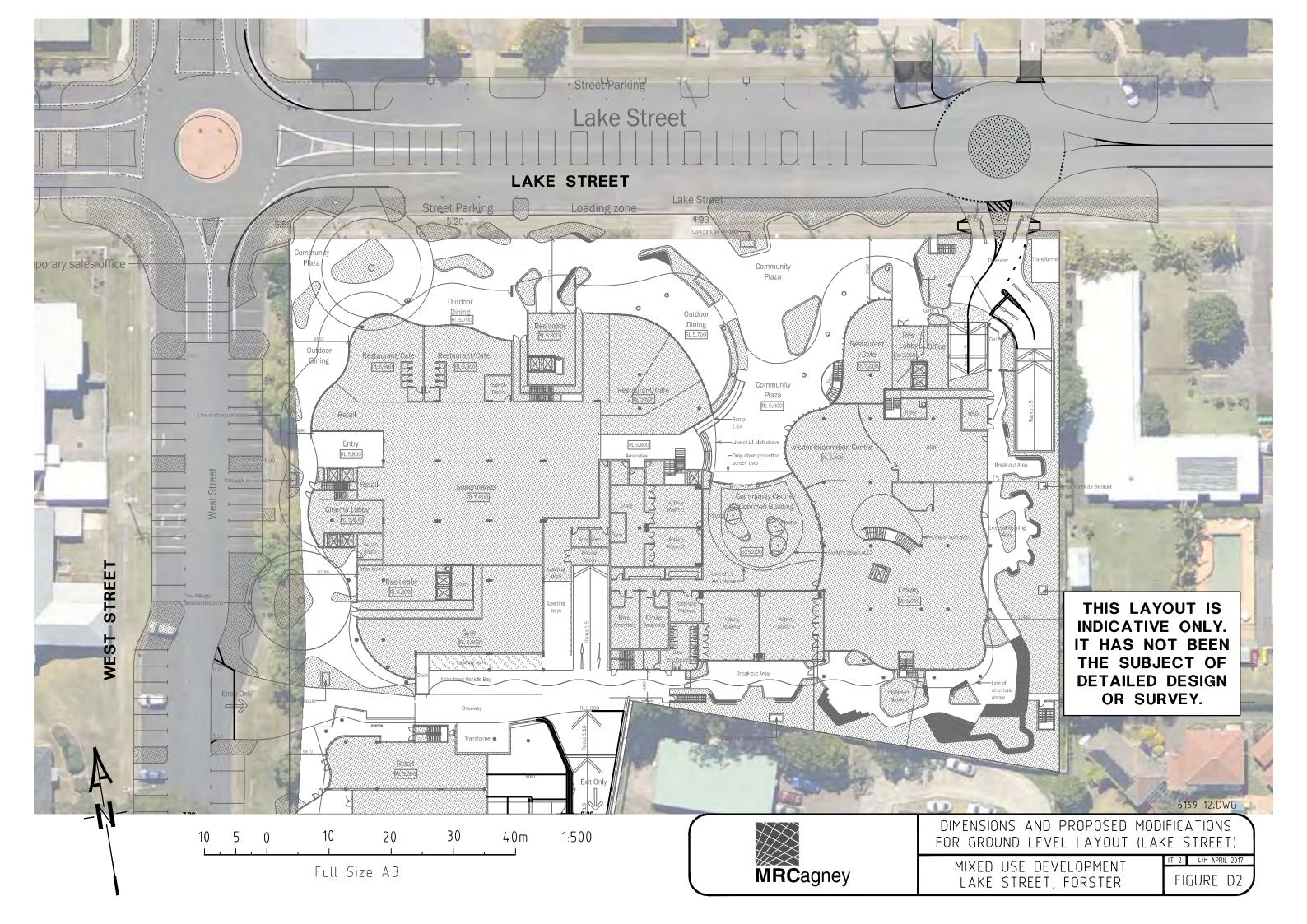
## HOURLY FLOW

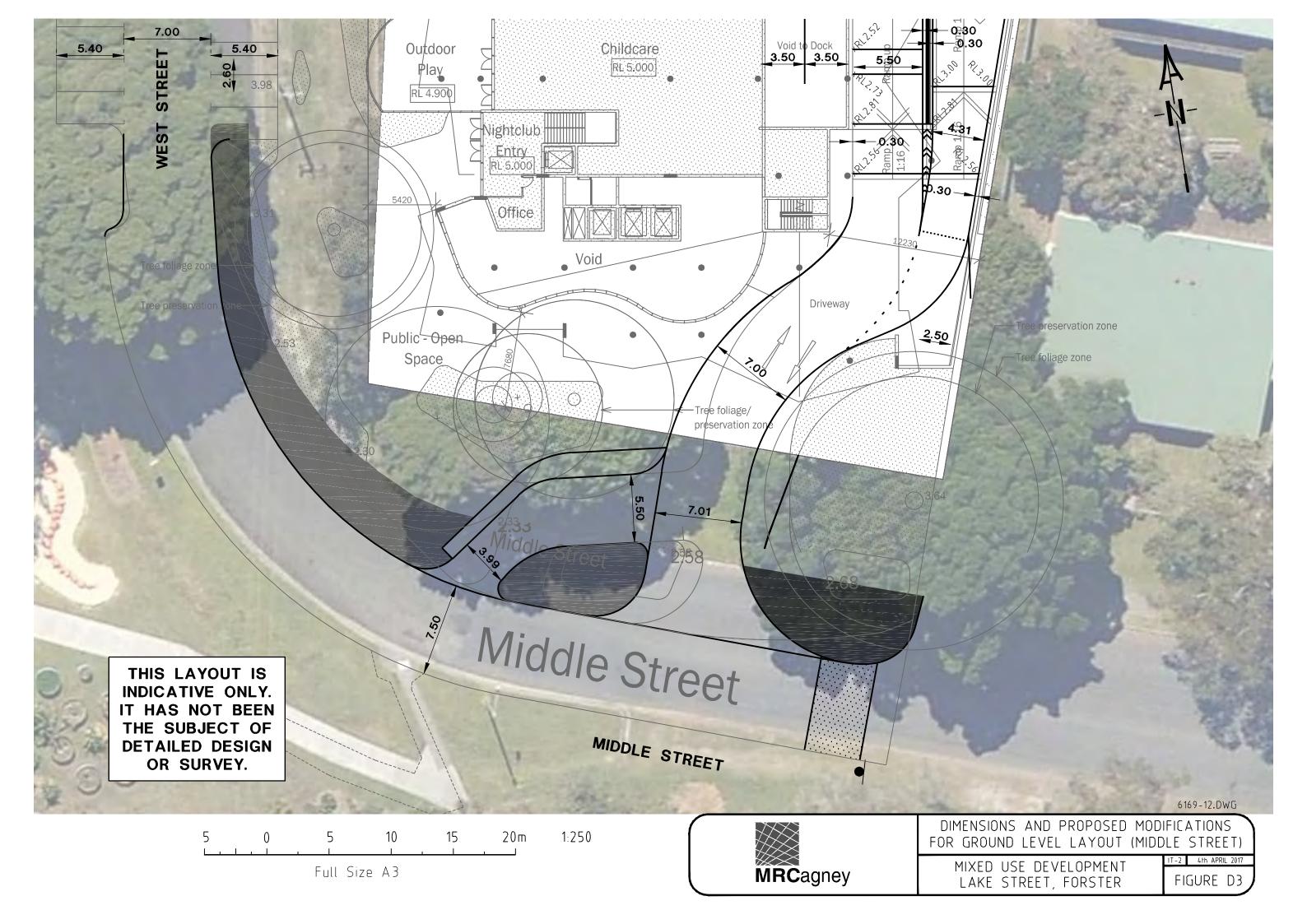
| TIME PERIOD | M     | Movement | 1     | Мо    | vement 2 |       |       | Movemer | nt 3  |       | Moveme | nt 3A   |       | Movemen | t 4   | N     | lovement 5 |          | Moven   | nent 6   |       | Movement | 6A    | N     | Movement 7 |             | Mov   | ement 8       |       | Movement 9  | ľ     | Novement 9 | PA AG | M     | lovement 10 |         | Moveme | nt 11   |       | Movement | 12         | Moveme | ent 12A  |       | <b>Grand Total</b> |    |
|-------------|-------|----------|-------|-------|----------|-------|-------|---------|-------|-------|--------|---------|-------|---------|-------|-------|------------|----------|---------|----------|-------|----------|-------|-------|------------|-------------|-------|---------------|-------|-------------|-------|------------|-------|-------|-------------|---------|--------|---------|-------|----------|------------|--------|----------|-------|--------------------|----|
|             | Light | Heavy    | Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | t Heav | y Total | Light | Heavy   | Total | Light | Heavy To   | otal Liç | ght Hea | vy Total | Light | Heavy    | Total | Light | Heavy T    | otal Li     | ght F | leavy Total   | Light | Heavy Total | Light | Heavy      | Total | Light | Heavy Tota  | I Light | Heav   | y Total | Light | Heavy    | Total Lig  | nt Hea | vy Total | Light | Heavy              | То |
| 7:30 - 8:30 | 31    | 2        | 33    | 504   | 17       | 521   | 104   | 5       | 109   | 0     | 0      | 0       | 75    | 5       | 80    | 1     | 0          | 1 (      | 0       | 0        | 0     | 0        | 0     | 26    | 3          | <b>29</b> 4 | 67    | 23 490        | 0     | 0 0         | 0     | 0          | 0     | 6     | 0 6         | 0       | 0      | 0       | 0     | 0        | <b>0</b> 0 | 0      | 0        | 1214  | 55                 | 12 |
| 7:45 - 8:45 | 45    | 1        | 46    | 545   | 17       | 562   | 161   | 6       | 167   | 0     | 0      | 0       | 101   | 5       | 106   | 1     | 0          | 1 (      | 0       | 0        | 0     | 0        | 0     | 33    | 2          | <b>35</b> 5 | 58    | 24 582        | 0     | 0 0         | 0     | 0          | 0     | 4     | 0 4         | 0       | 0      | 0       | 1     | 0        | 1 0        | 0      | 0        | 1449  | 55                 | 15 |
| 8:00 - 9:00 | 57    | 1        | 58    | 571   | 28       | 599   | 193   | 6       | 199   | 0     | 0      | 0       | 115   | 7       | 122   | 0     | 0          | 0 (      | 0       | 0        | 0     | 0        | 0     | 41    | 2          | <b>43</b> 6 | 63    | 30 <b>693</b> | 0     | 0 0         | О     | 0          | 0     | 4     | 0 4         | О       | 0      | 0       | 1     | 0        | <b>1</b> 0 | 0      | O        | 1645  | 74                 | 17 |
| 8:15 - 9:15 | 66    | 0        | 66    | 554   | 30       | 584   | 212   | 5       | 217   | 0     | 0      | 0       | 128   | 6       | 134   | 0     | 0          | 0        | 0       | 0        | 0     | 0        | 0     | 48    | 3          | <b>51</b> 7 | 07    | 30 737        | 0     | 0 0         | 0     | 0          | 0     | 3     | 0 3         | 0       | 0      | 0       | 1     | 0        | <b>1</b> 0 | 0      | 0        | 1719  | 74                 | 17 |
| 8:30 - 9:30 | 68    | 0        | 68    | 572   | 36       | 608   | 187   | 3       | 190   | 0     | 0      | 0       | 125   | 4       | 129   | 0     | 0          | 0 (      | 0       | 0        | 0     | 0        | 0     | 49    | 3          | <b>52</b> 7 | 02    | 29 <b>731</b> | 0     | 0 <b>0</b>  | 0     | 0          | 0     | 2     | 0 2         | 0       | 0      | 0       | 2     | 0        | <b>2</b> 0 | 0      | 0        | 1707  | 75                 | 17 |

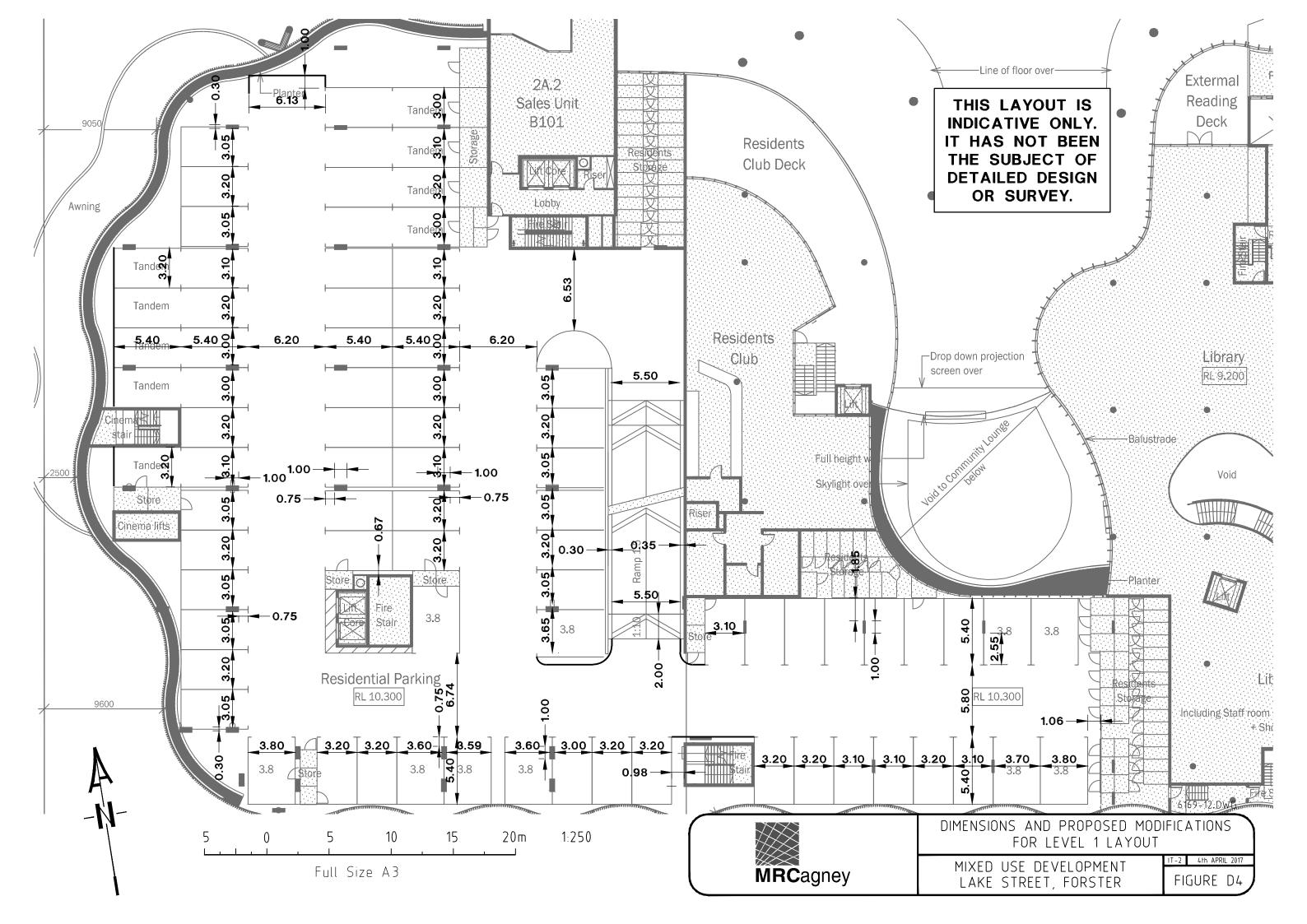
| <b>HOURLY FLOW</b> |       |        |         |       |          |       |       |         |       |       |          |       |       |            |       |       |           |       |       |            |       |       |           |       |       |            |          |       |         |       |       |           |        |       |          |       |       |           |         |       |           |       |       |           |       |       |           |       |       |             |       |
|--------------------|-------|--------|---------|-------|----------|-------|-------|---------|-------|-------|----------|-------|-------|------------|-------|-------|-----------|-------|-------|------------|-------|-------|-----------|-------|-------|------------|----------|-------|---------|-------|-------|-----------|--------|-------|----------|-------|-------|-----------|---------|-------|-----------|-------|-------|-----------|-------|-------|-----------|-------|-------|-------------|-------|
| TIME PERIOD        | N     | Moveme | ent 1   |       | Movement | 2     | N     | Movemen | nt 3  |       | Movement | 3A    | ı     | Movement 4 | ı     | M     | ovement 5 |       | M     | lovement 6 |       | M     | ovement 6 | A     | M     | lovement 7 | <b>'</b> | М     | ovement | 3     | Mc    | ovement 9 |        | Mov   | ement 9A |       | Мо    | vement 10 |         | Mov   | vement 11 | 1     | Mc    | ovement 1 | 12    | Мо    | vement 12 | Α     |       | Grand Total |       |
|                    | Light | Heav   | y Total | Light | Heavy    | Total | Light | Heavy   | Total | Light | Heavy    | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light | Heavy      | Total | Light | Heavy     | Total | Light | Heavy      | Total    | Light | Heavy   | Total | Light | Heavy T   | otal L | Light | Heavy    | Total | Light | Heavy     | Total L | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy     | Total | Light | Heavy       | Total |
| 14:30 - 15:30      | 40    | 0      | 40      | 574   | 23       | 597   | 168   | 2       | 170   | 1     | 0        | 1     | 167   | 7          | 174   | 0     | 0         | 0     | 0     | 0          | 0     | 0     | 0         | 0     | 44    | 0          | 44       | 714   | 24      | 738   | 0     | 0         | 0      | 0     | 0        | 0     | 5     | 0         | 5       | 1     | 0         | 1     | 0     | 0         | 0     | 0     | 0         | 0     | 1714  | 56          | 1770  |
| 14:45 - 15:45      | 39    | 0      | 39      | 585   | 23       | 608   | 160   | 2       | 162   | 1     | 0        | 1     | 172   | 6          | 178   | 0     | 0         | 0     | 0     | 0          | 0     | 0     | 0         | 0     | 43    | 2          | 45       | 723   | 27      | 750   | 0     | 0         | 0      | 0     | 0        | 0     | 4     | 0         | 4       | 1     | 0         | 1     | 0     | 0         | 0     | 0     | 0         | 0     | 1728  | 60          | 1788  |
| 15:00 - 16:00      | 36    | 0      | 36      | 563   | 16       | 579   | 140   | 1       | 141   | 2     | 0        | 2     | 174   | 6          | 180   | 0     | 0         | 0     | 0     | 0          | 0     | 0     | 0         | 0     | 45    | 2          | 47       | 708   | 22      | 730   | 0     | 0         | 0      | 0     | 0        | 0     | 2     | 0         | 2       | 1     | 0         | 1     | 1     | 0         | 1     | 0     | 0         | 0     | 1672  | 47          | 1719  |
| 15:15 - 16:15      | 32    | 0      | 32      | 596   | 14       | 610   | 150   | 2       | 152   | 2     | 0        | 2     | 133   | 4          | 137   | 0     | 0         | 0     | 0     | 0          | 0     | 0     | 0         | 0     | 49    | 2          | 51       | 639   | 20      | 659   | 0     | 0         | 0      | 0     | 0        | 0     | 1     | 0         | 1       | 1     | 0         | 1     | 1     | 0         | 1     | 0     | 0         | 0     | 1604  | 42          | 1646  |
| 15:30 - 16:30      | 24    | 1      | 25      | 594   | 11       | 605   | 143   | 2       | 145   | 2     | 0        | 2     | 116   | 0          | 116   | 0     | 0         | 0     | 0     | 0          | 0     | 0     | 0         | 0     | 50    | 2          | 52       | 634   | 17      | 651   | 0     | 0         | 0      | 0     | 0        | 0     | 1     | 0         | 1       | 0     | 0         | 0     | 1     | 0         | 1     | 0     | 0         | 0     | 1565  | 33          | 1598  |

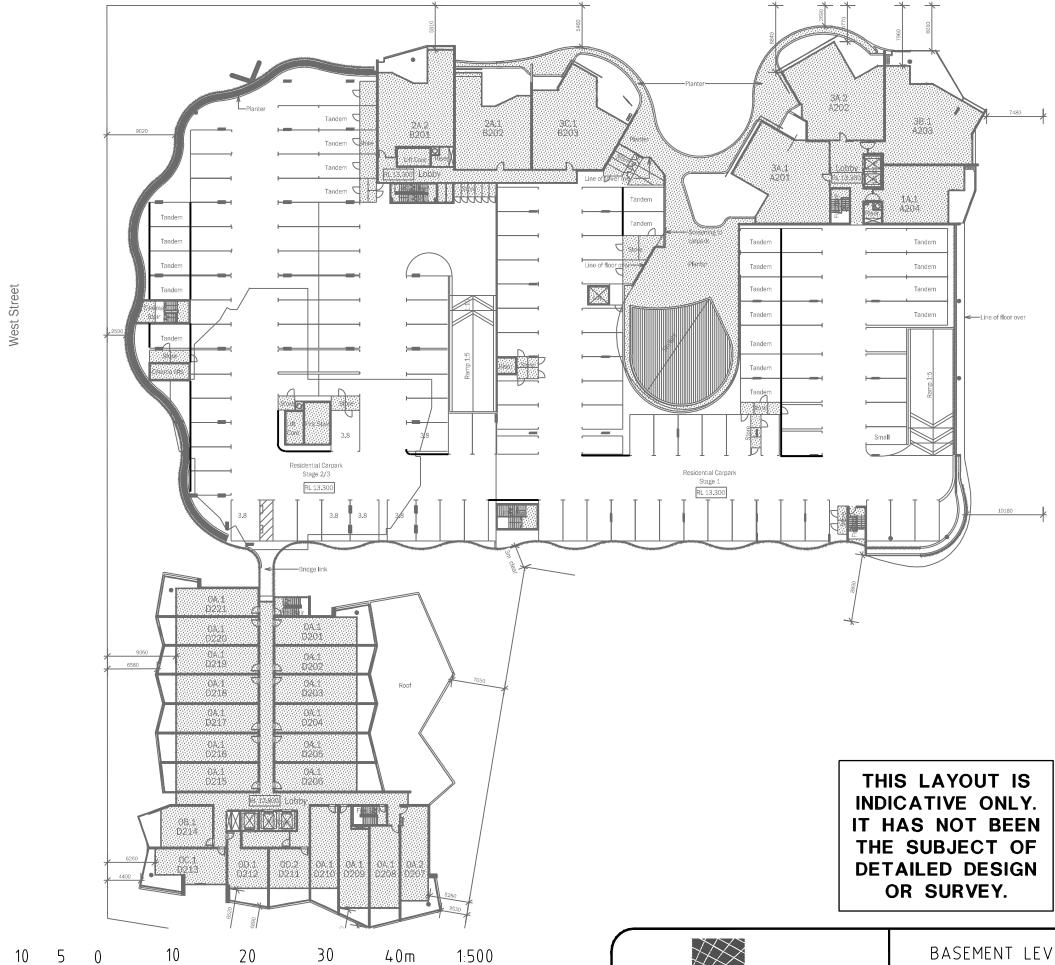
# Appendix D


#### **MRCagney Figures**


| Figure D1    |                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------|
| Figure D2    | Dimensions and Proposed Modifications for Ground Level Layout (Lake Street)                     |
| Figure D3    |                                                                                                 |
| Figure D4    | Dimensions and Proposed Modifications for Level 1 Layout                                        |
| Figure D5    | Level 2 Layout (Overall                                                                         |
| Figure D6    |                                                                                                 |
| Figure D7    | Dimensions and Proposed Modifications for Level 2 Layout (East)                                 |
| Figure D8    | Basement Level 1 Layout (Overall)                                                               |
| Figure D9    |                                                                                                 |
| Figure D10   |                                                                                                 |
| Figure D11   |                                                                                                 |
| Figure D12   |                                                                                                 |
| Figure D13   |                                                                                                 |
| Figure D14   | 19.0m Semi-Trailer Manoeuvring to Circulate Ground Level to Access Loading Area (West Street)   |
| Figure D15   | 19.0m Semi-Trailer Manoeuvring to Circulate Ground Level to Access Loading Area (Middle Street) |
| Figure D16   |                                                                                                 |
| Figure D17   |                                                                                                 |
| Figure D18   |                                                                                                 |
| Figure D19   |                                                                                                 |
| Figure D20   |                                                                                                 |
| Figure D21   |                                                                                                 |
| Figure D22 5 | 3.37m Van Manoeuvring to Circulate Ground Level & Basement Level 1 to Access Loading Area (BoH) |
| Figure D23   |                                                                                                 |
| Figure D24   |                                                                                                 |
| Figure D25   | 5.2m (B99) Large Car Manoeuvring to Circulate Ground Level Layout (Lake Street)                 |
| Figure D26   |                                                                                                 |
| Figure D27   |                                                                                                 |
| Figure D28   |                                                                                                 |
| Figure D29   | 5.2m (B99) Large Car Manoeuvring to Circulate Level 2 Layout (East)                             |
| Figure D30   |                                                                                                 |
| Figure D31   |                                                                                                 |
| Figure D32   |                                                                                                 |
| Figure D33   | 5.2m (B99) Large Car Manoeuvring to Circulate Basement Level 1 (Southeast)                      |





| Figure D34 | 5.2m (B99) Large Car Manoeuvring to Circulate Basement Level 2                     |
|------------|------------------------------------------------------------------------------------|
| Figure D35 | Proposed Layout and Grading for Service Vehicle Ramp and Loading Area              |
| Figure D36 | Proposed Layout and Grading for Middle Street Driveway Crossove                    |
| Figure D37 | Proposed Layout and Grading for Lake Street Access to Basement Level 1 from Ground |
| Figure D38 | Proposed Layout and Grading for Lake Street Access to Level 2 from Ground          |
| Figure D39 | Proposed Layout and Grading from West Street Aisle to Levels 1 and 2               |
| Figure D40 | Proposed Layout and Grading for Access to Basement Level 2 from Basement Level     |







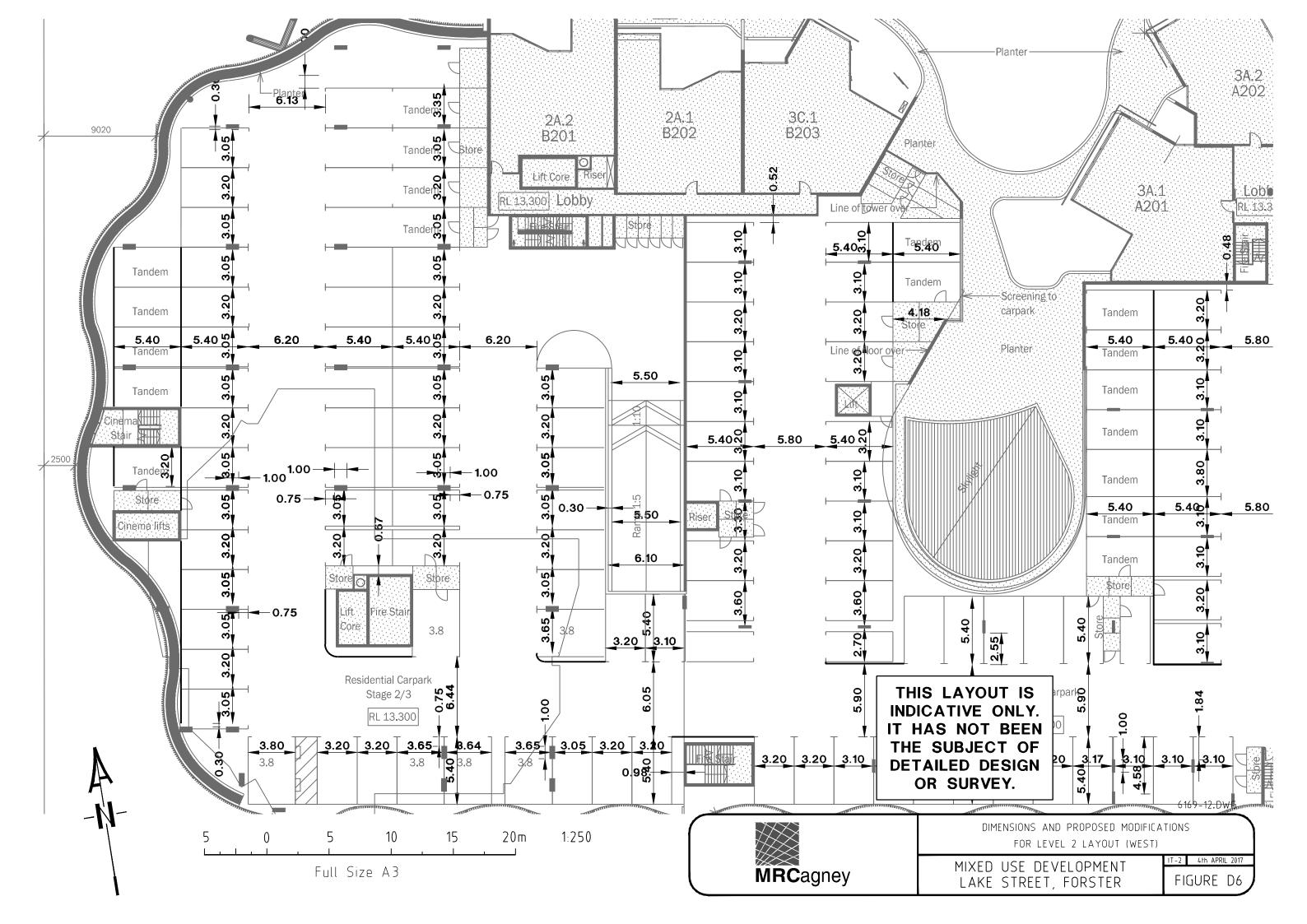


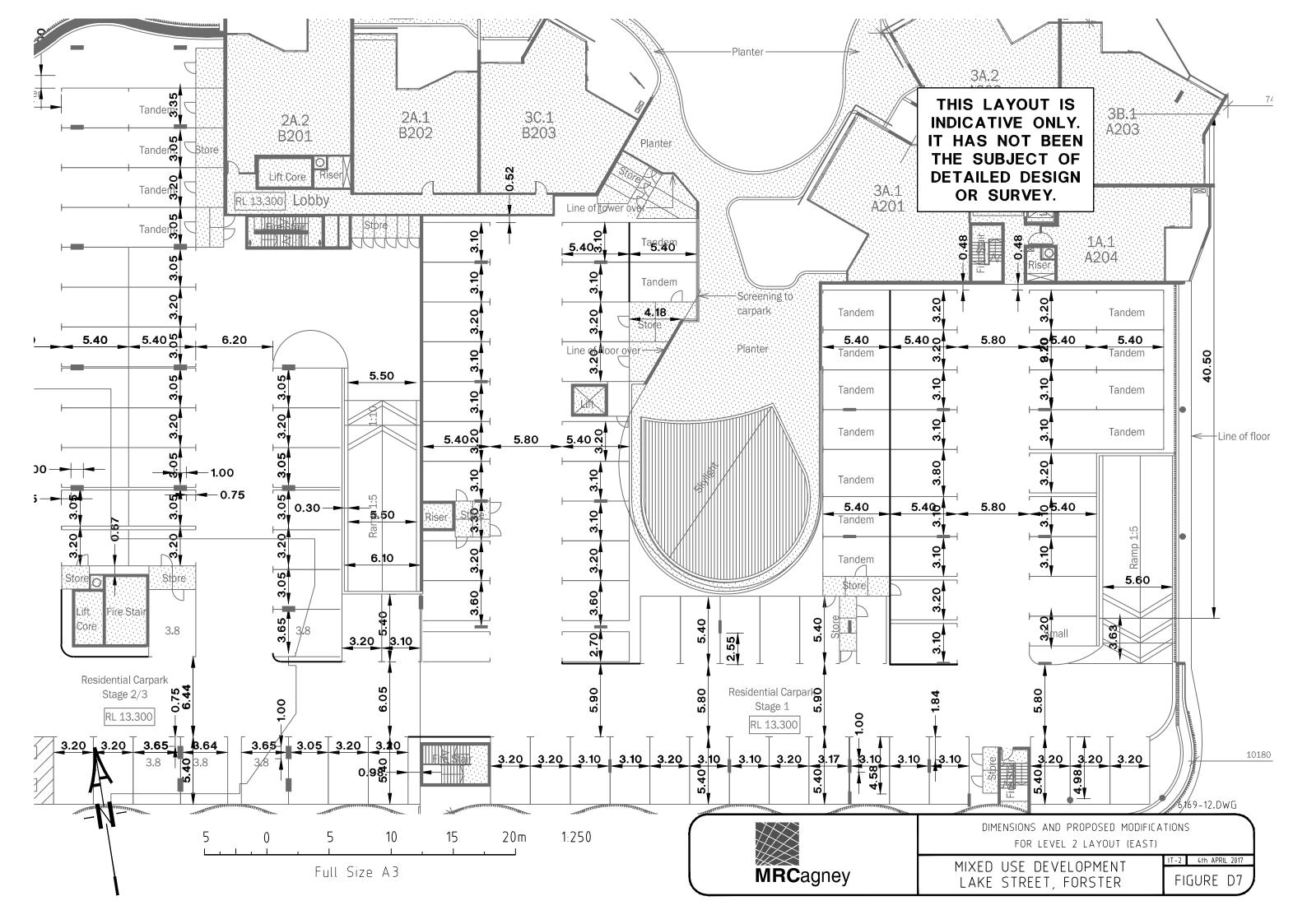


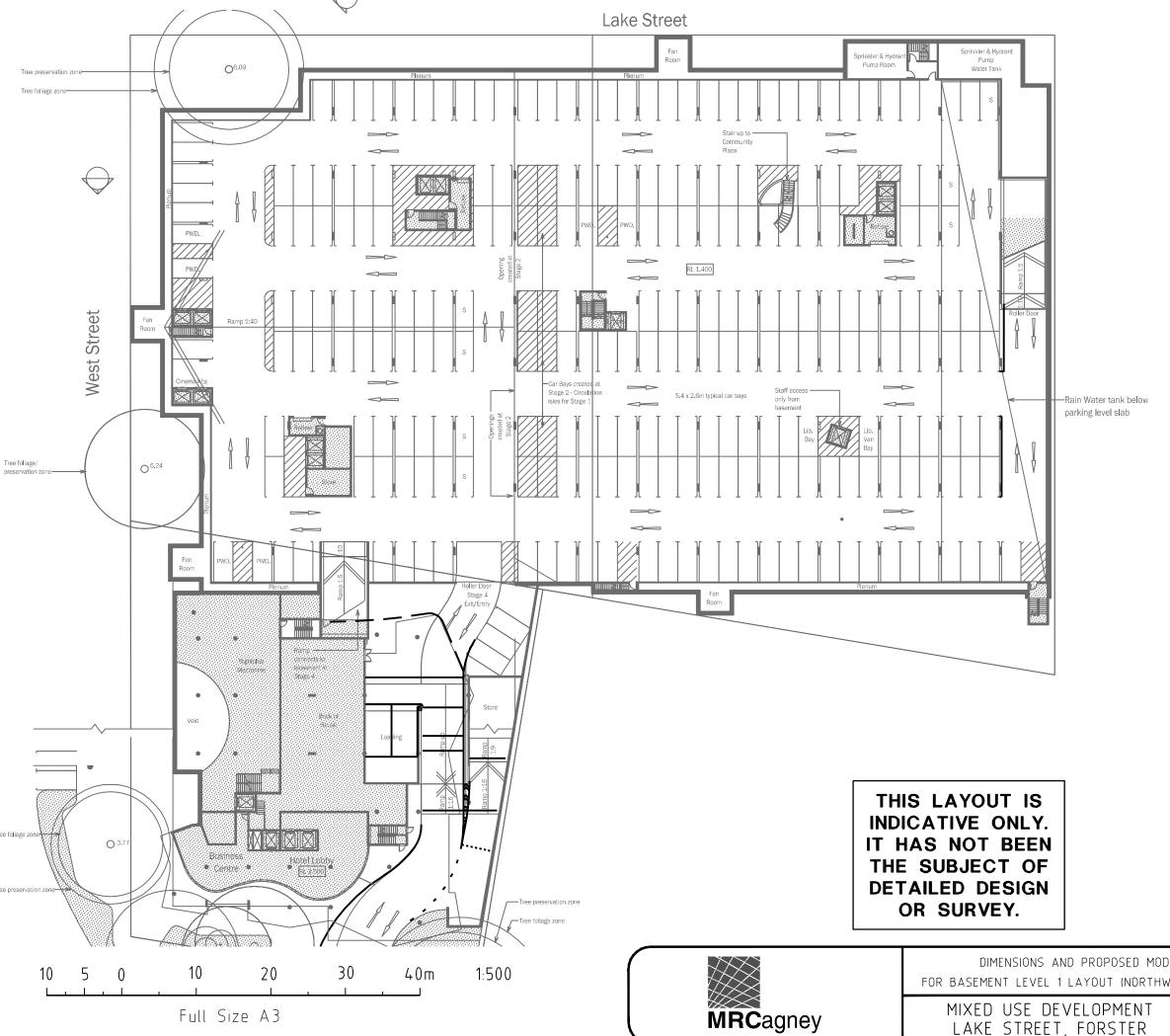



A-N-

Full Size A3


6169-12.DWG


BASEMENT LEVEL 2 LAYOUT (OVERALL)


MIXED USE DEVELOPMENT LAKE STREET, FORSTER

**MRC**agney

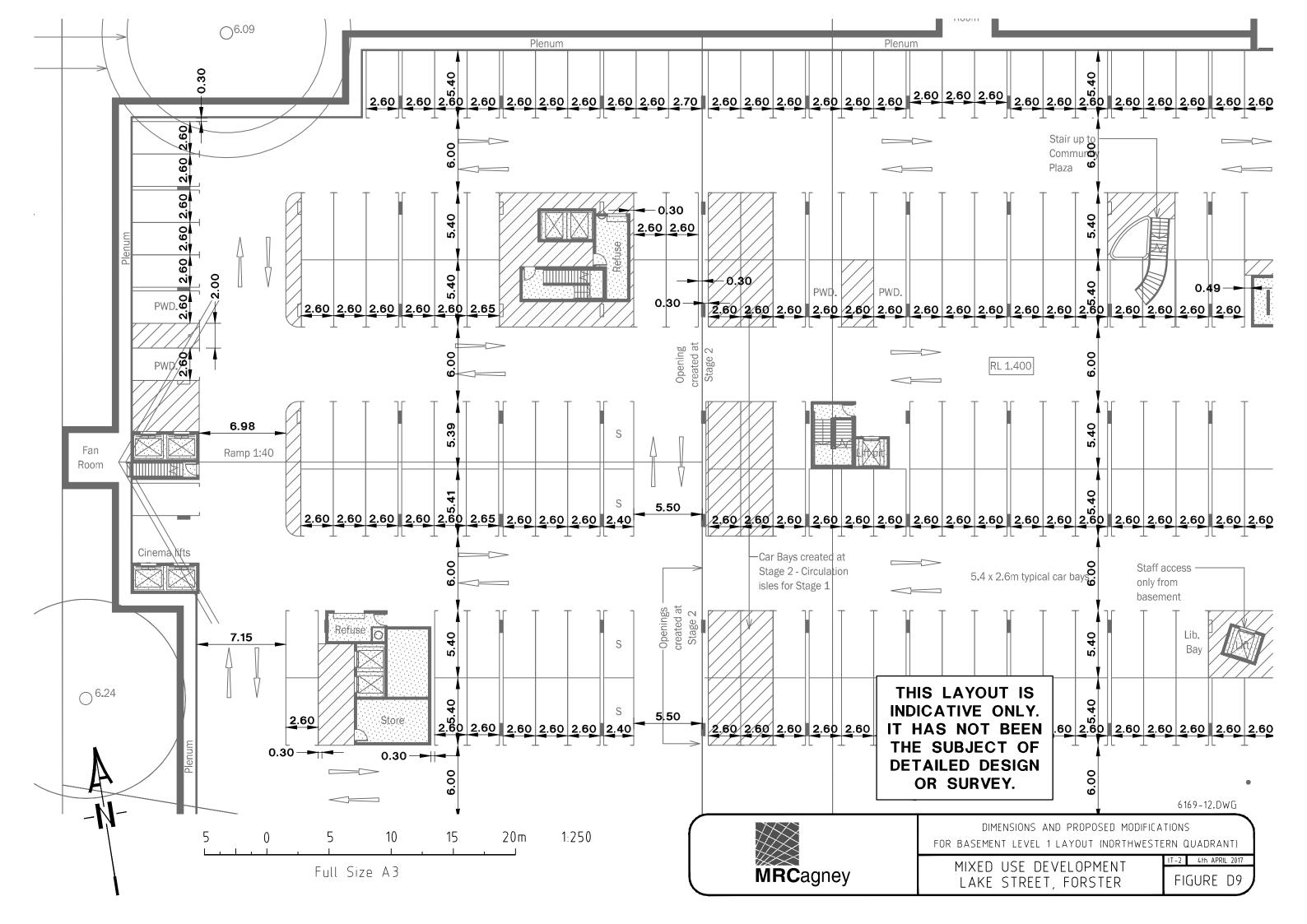
FIGURE D5

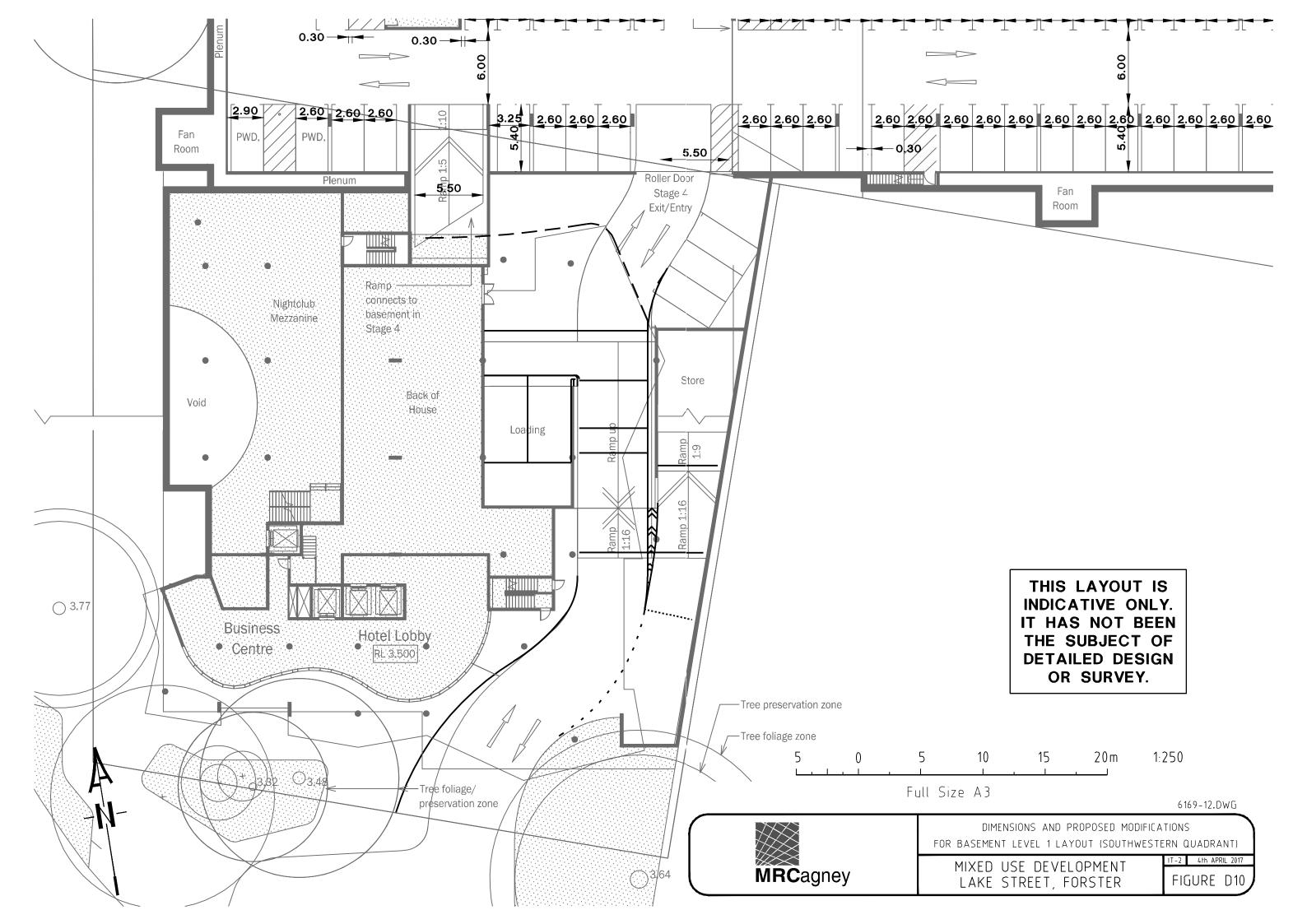




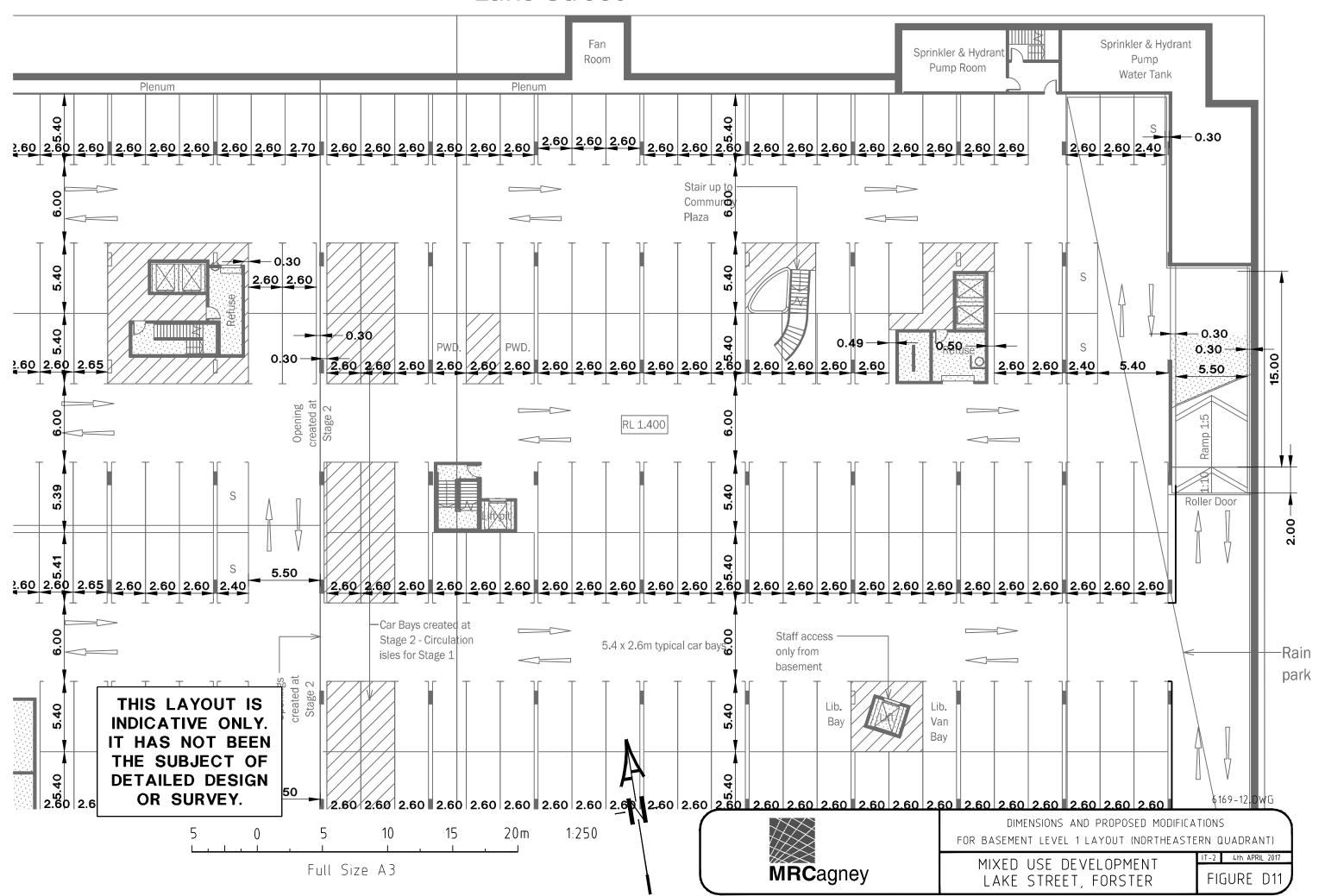


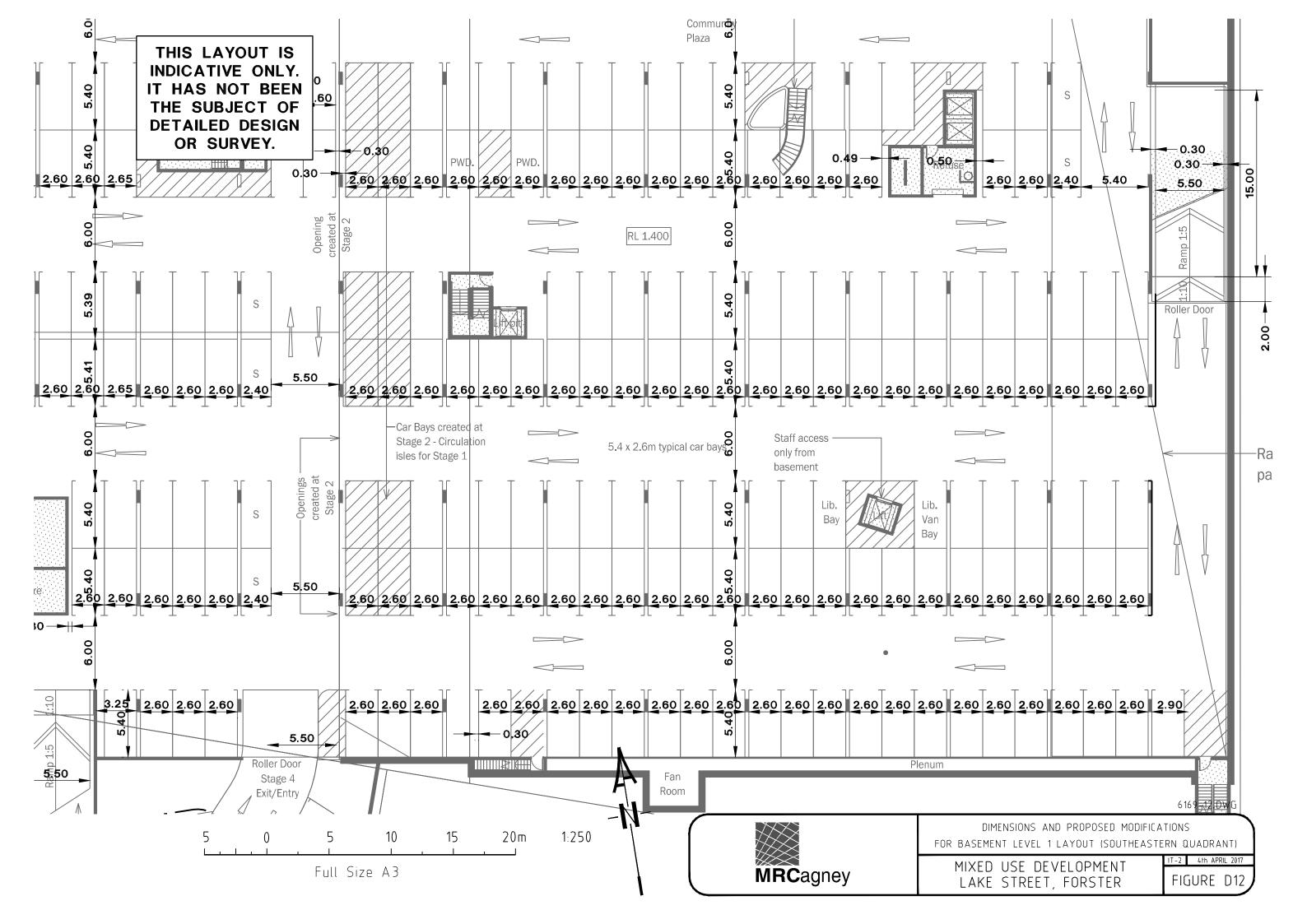
Full Size A3


6169-12.DWG

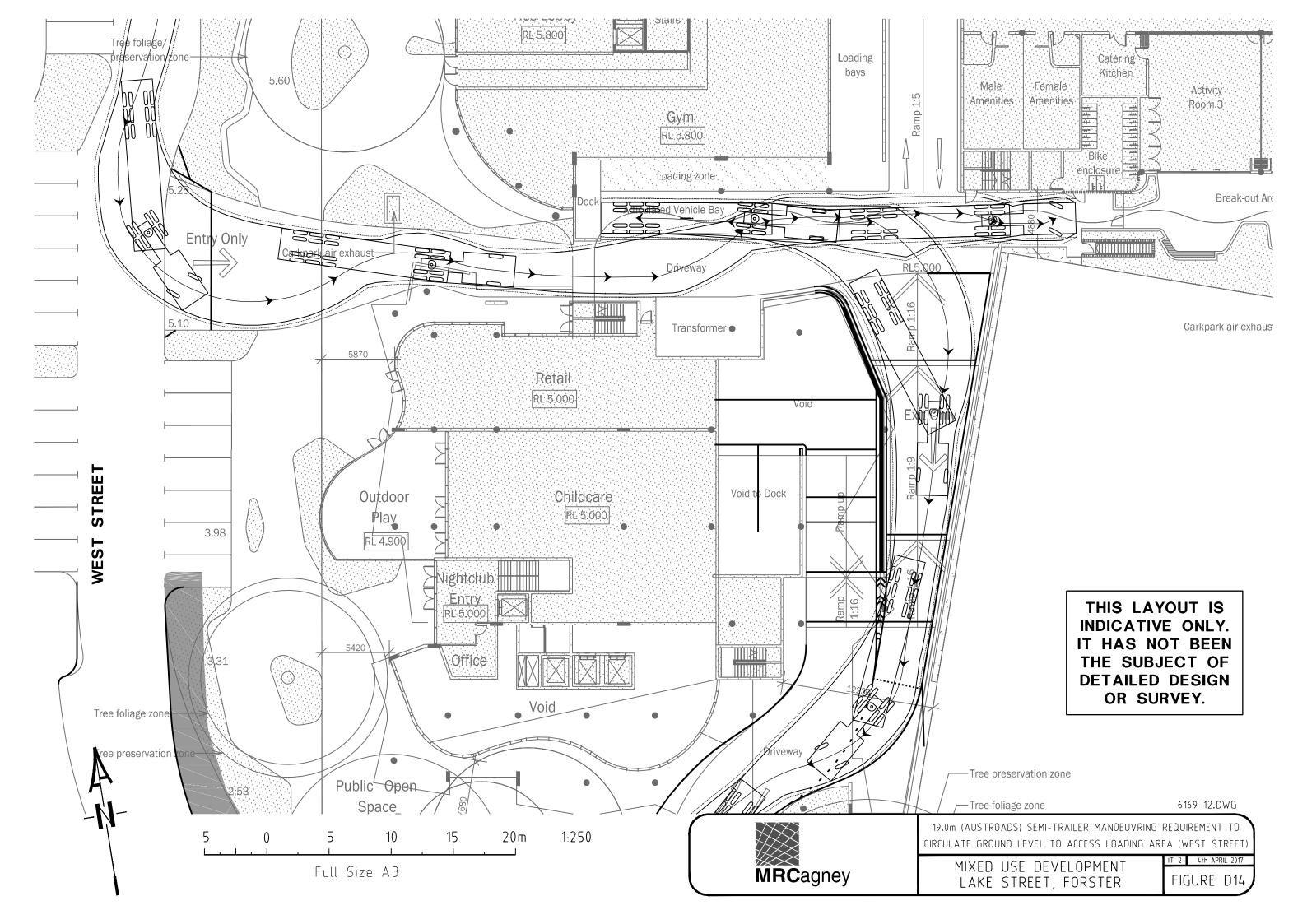

DIMENSIONS AND PROPOSED MODIFICATIONS

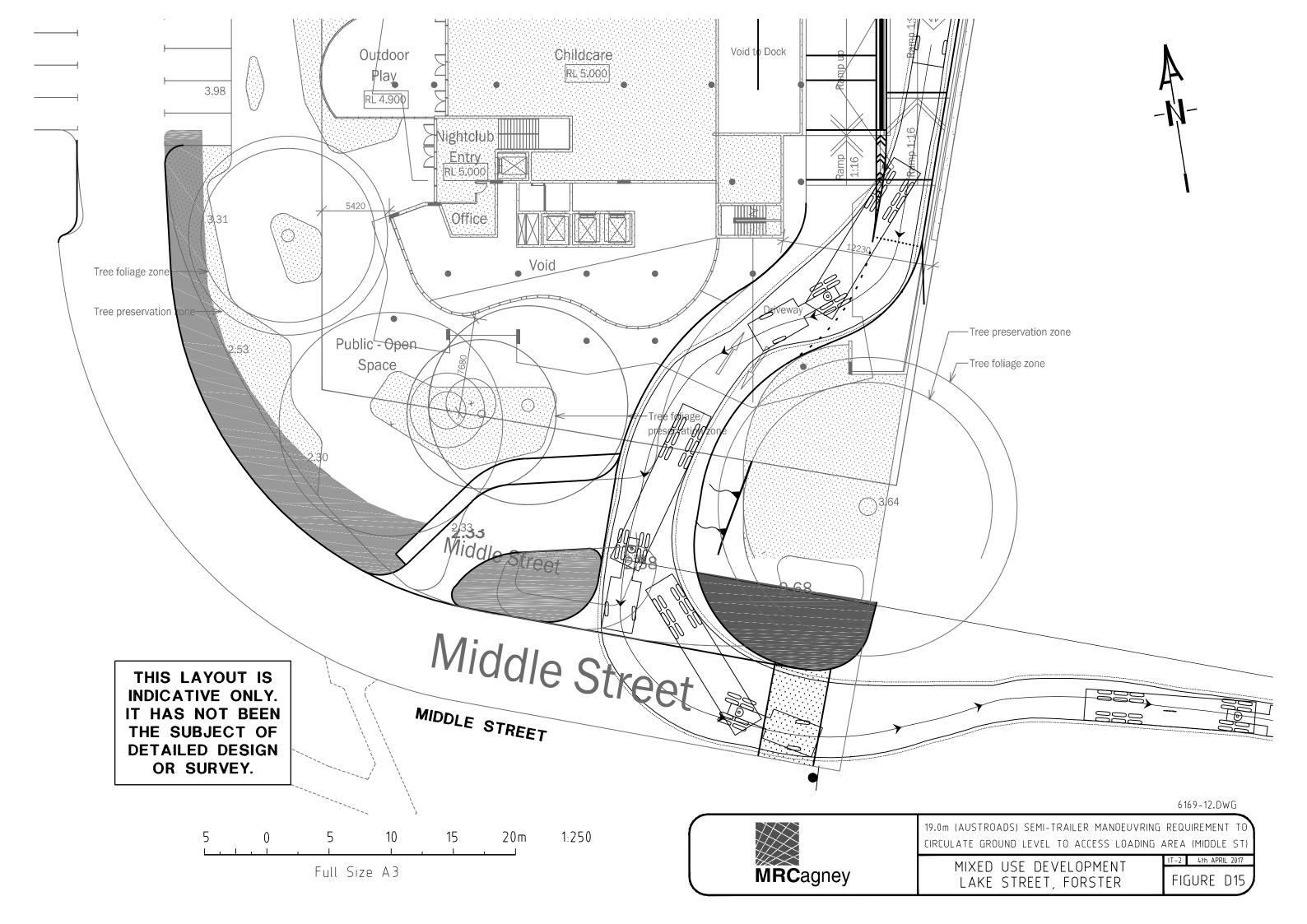
FOR BASEMENT LEVEL 1 LAYOUT (NORTHWESTERN QUADRANT)

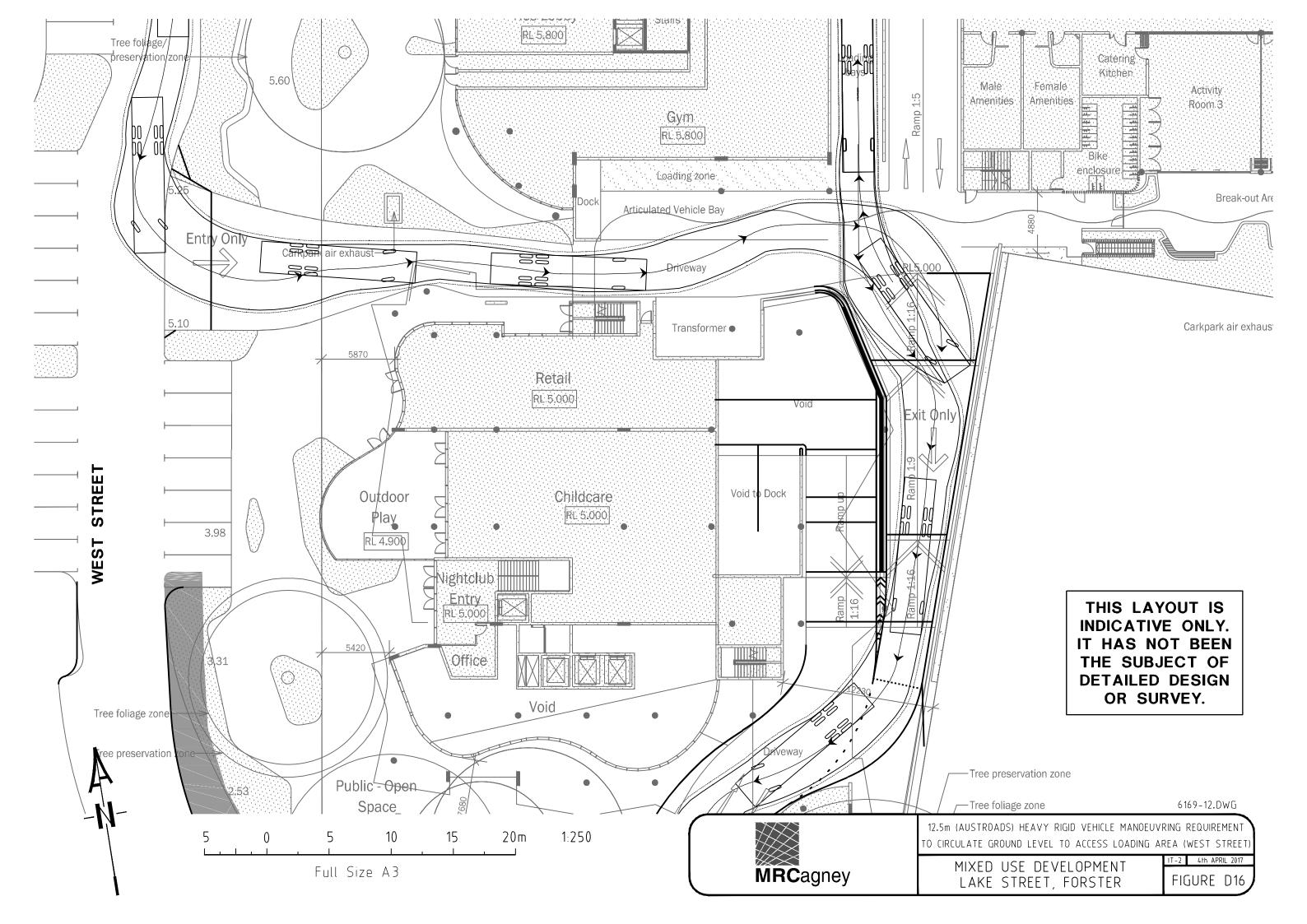

MIXED USE DEVELOPMENT LAKE STREET, FORSTER


IT-2 4th APRIL 2017 FIGURE D8

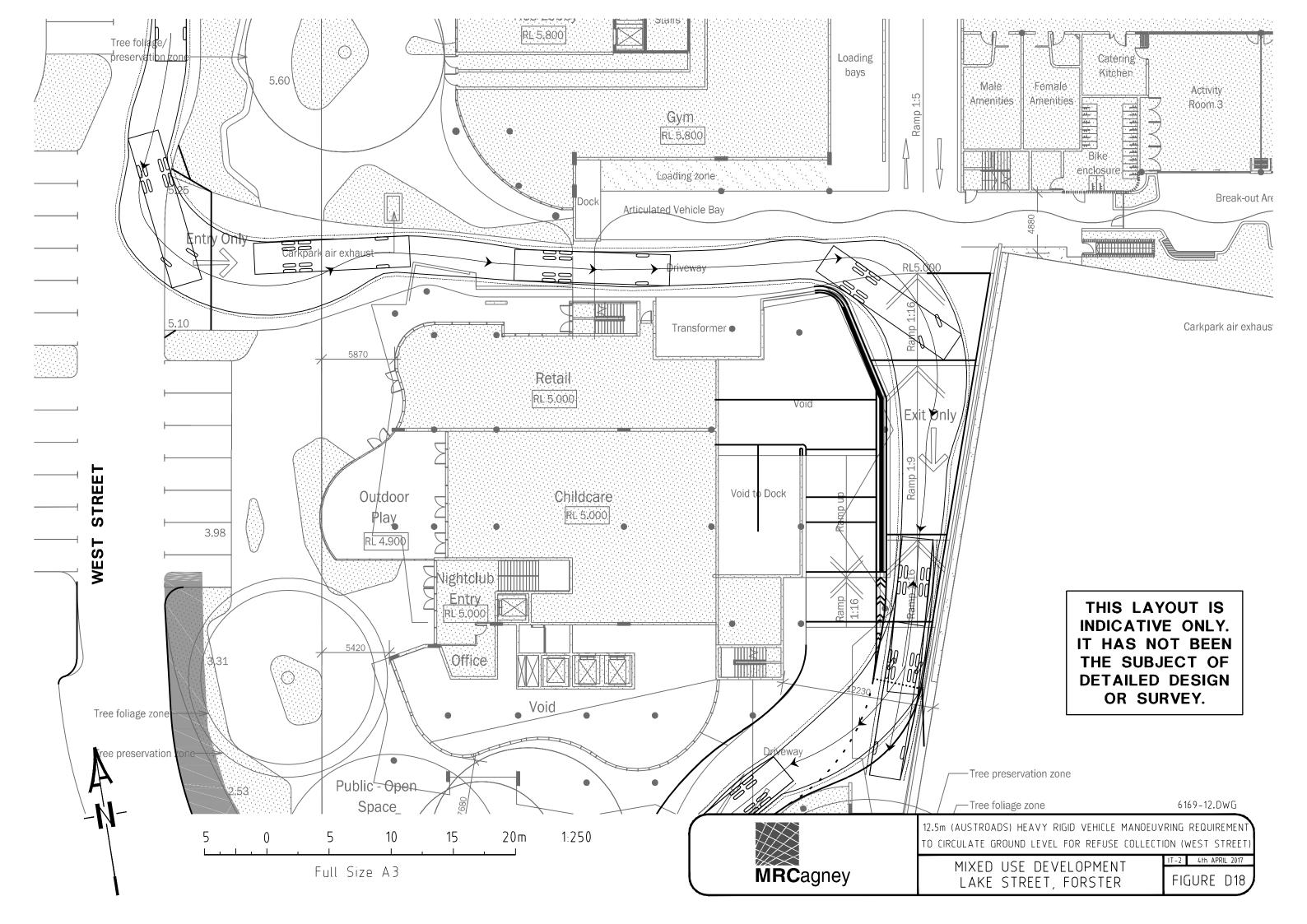


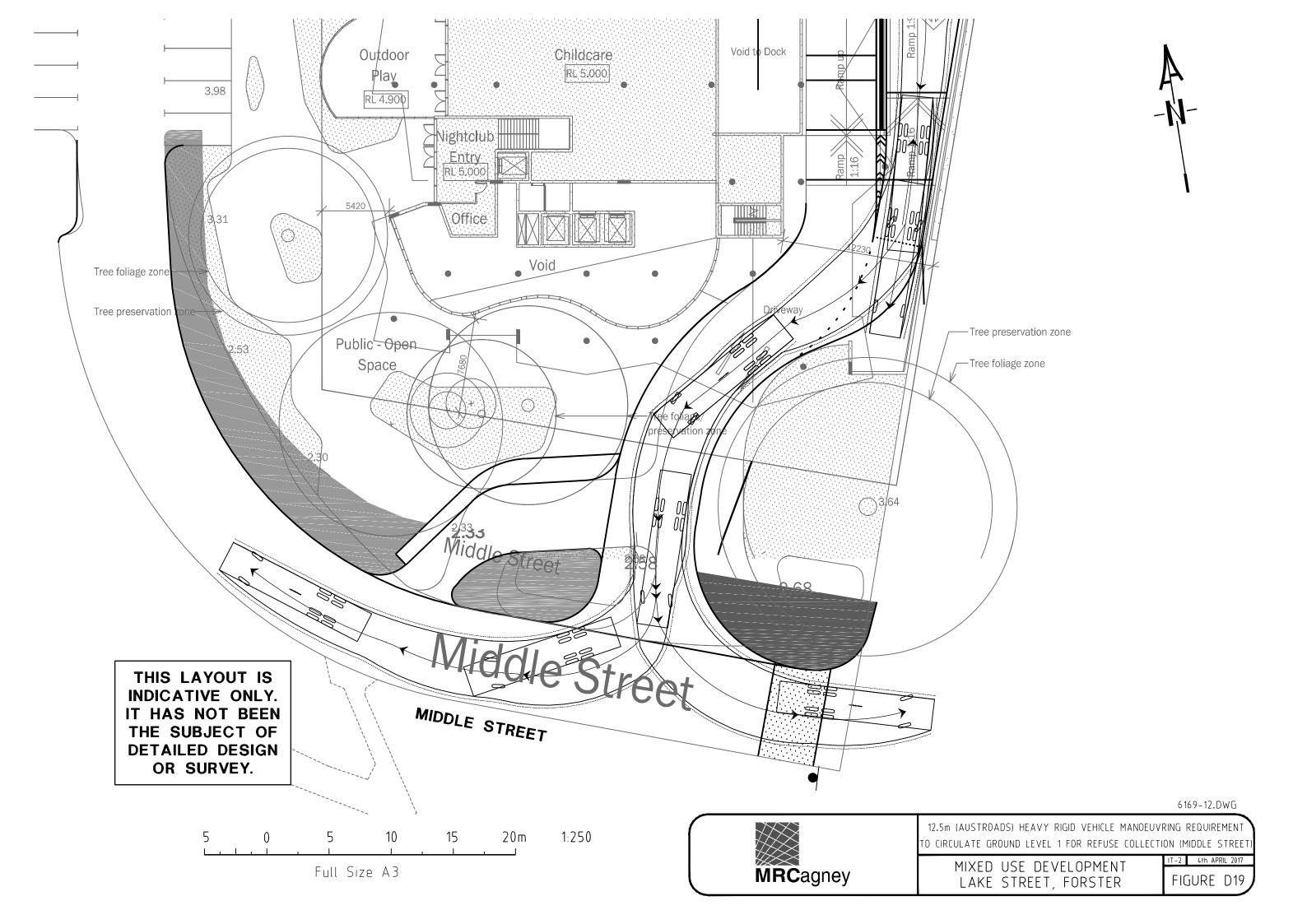


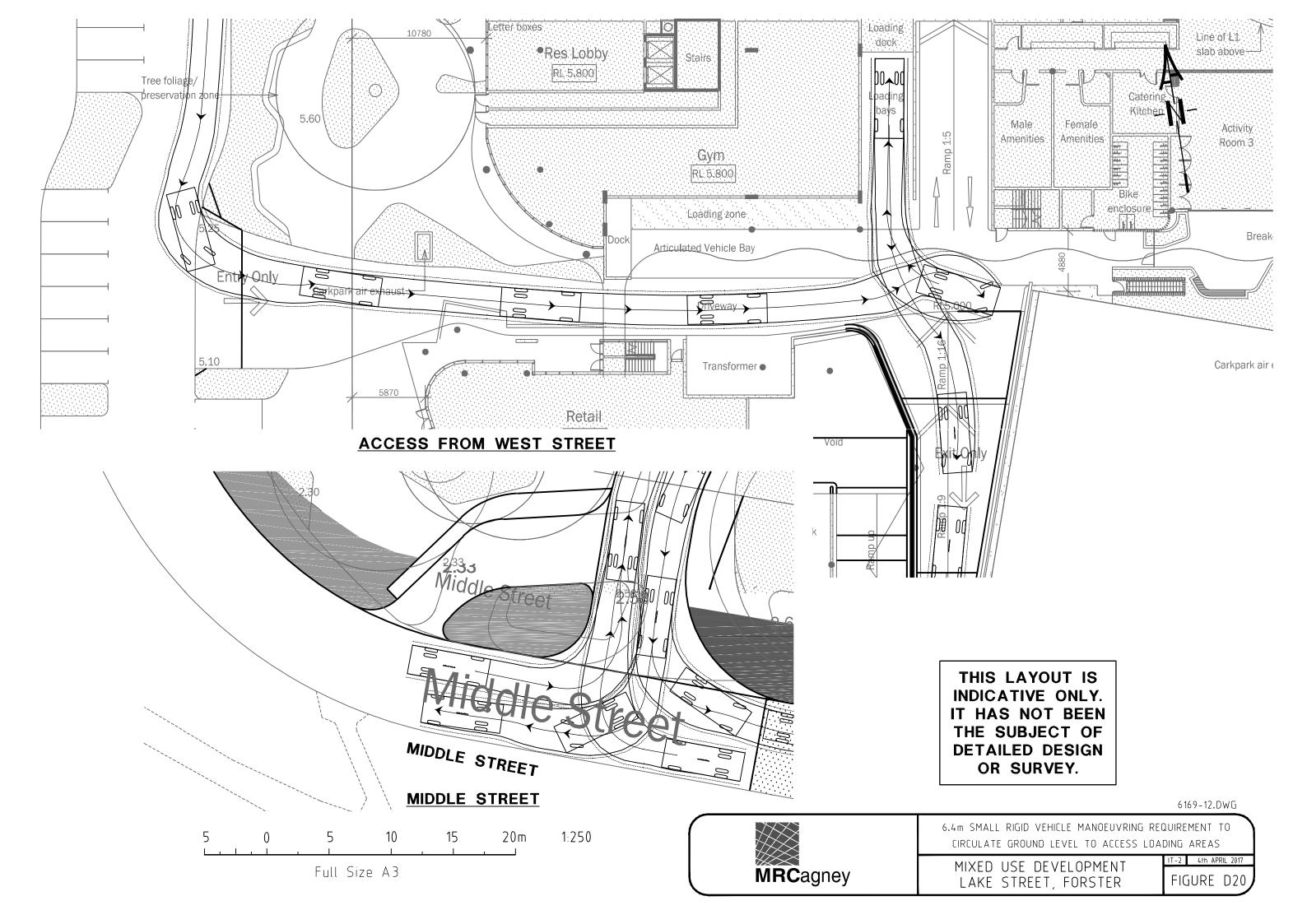


Lake Street

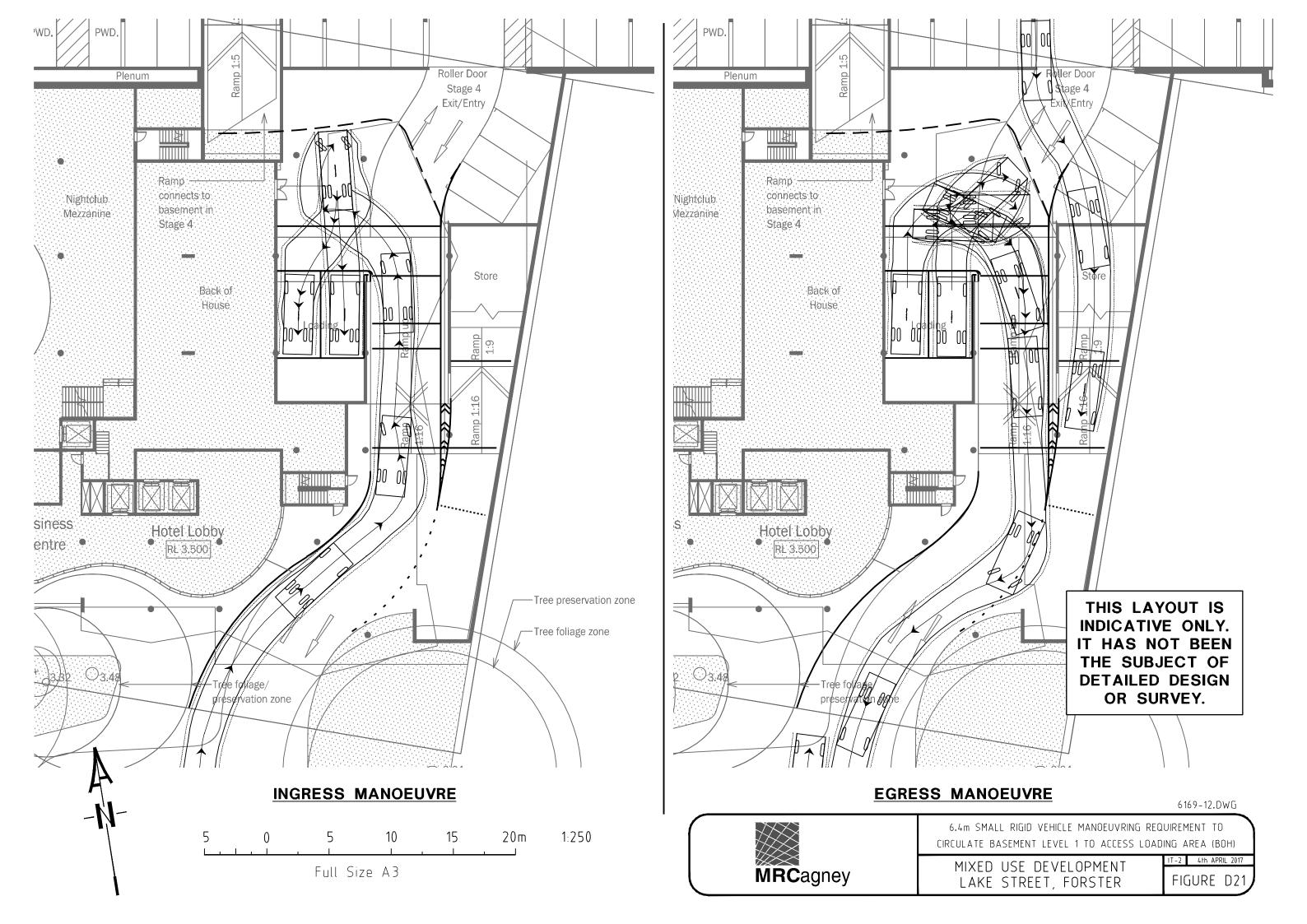


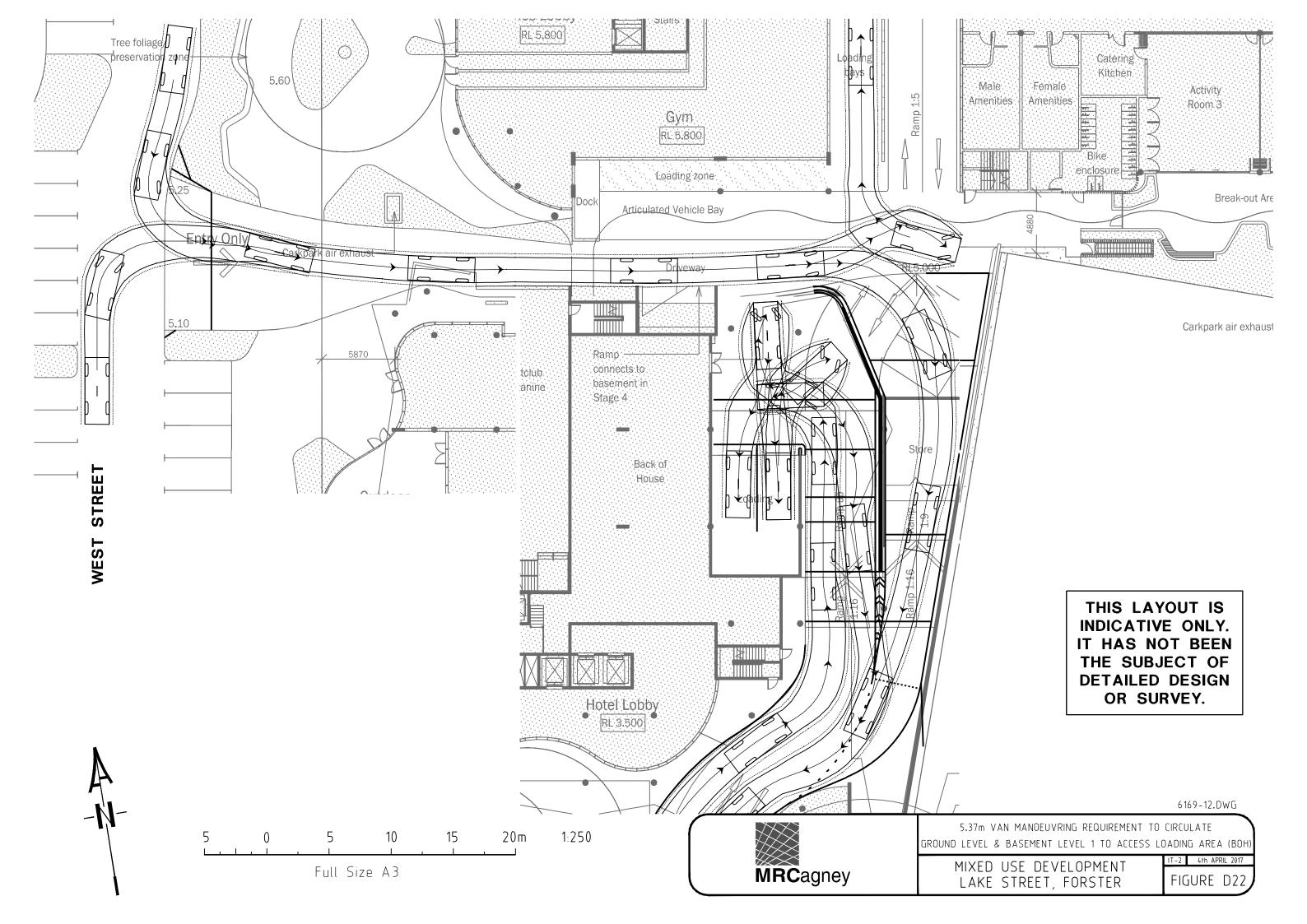


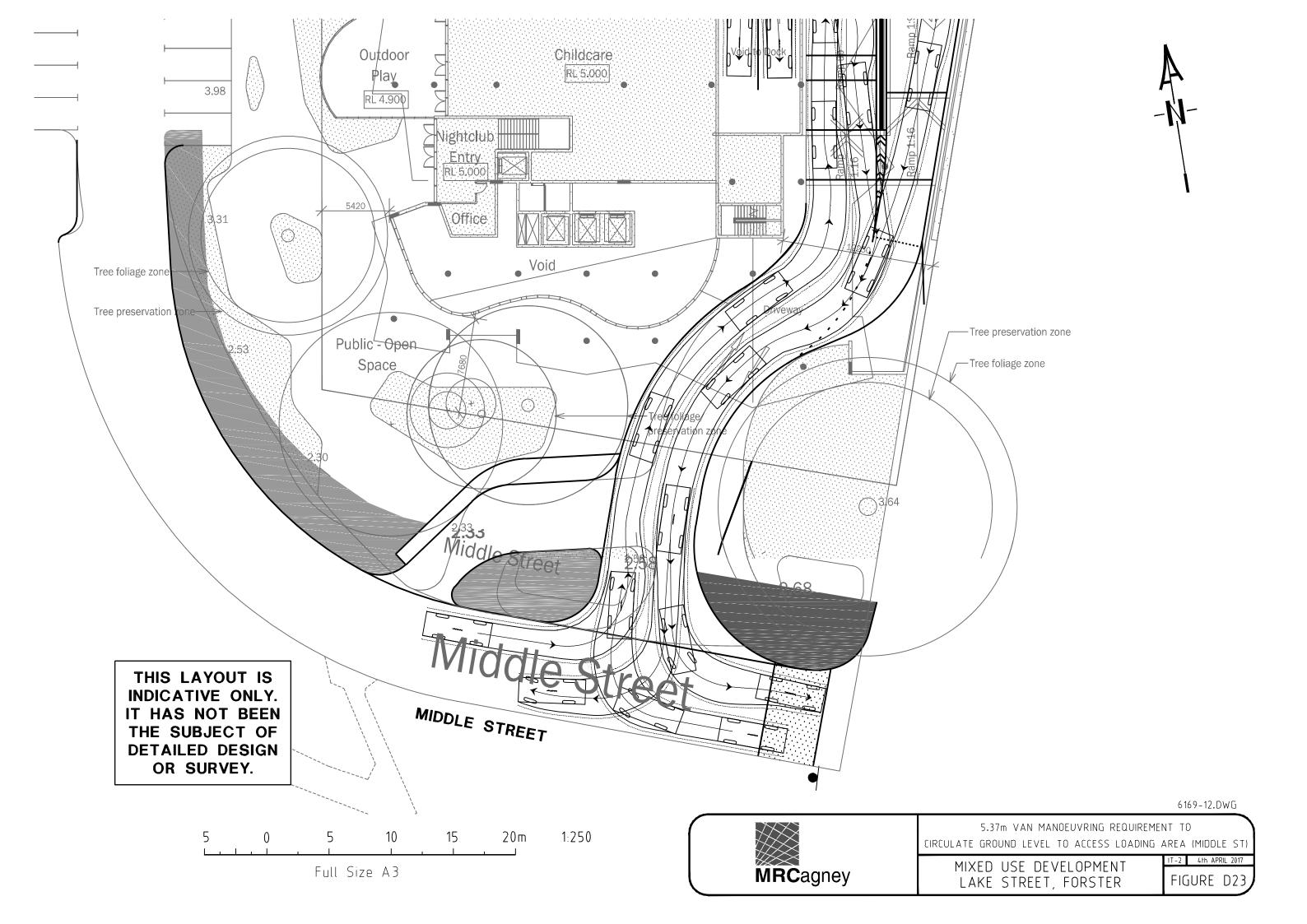



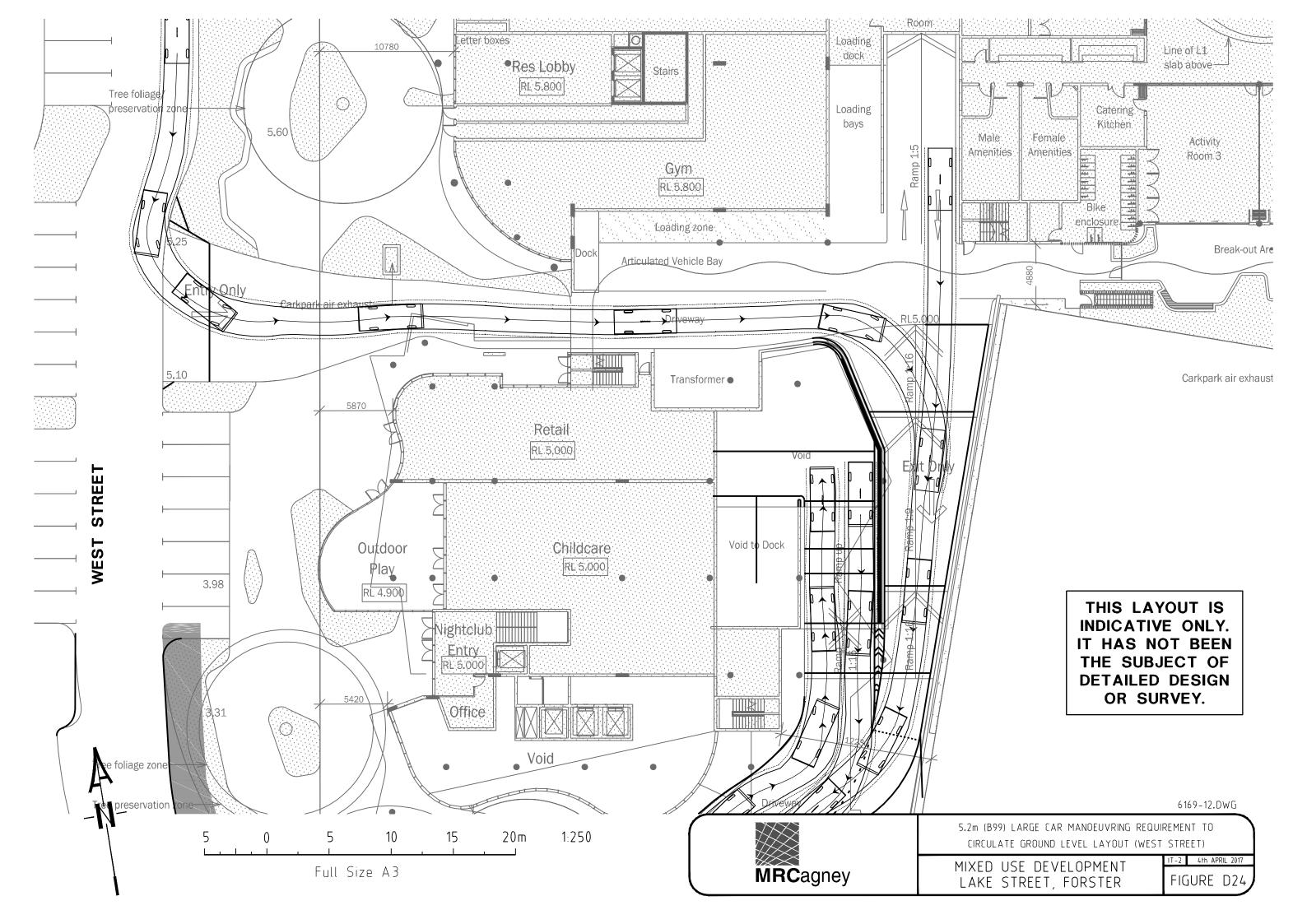



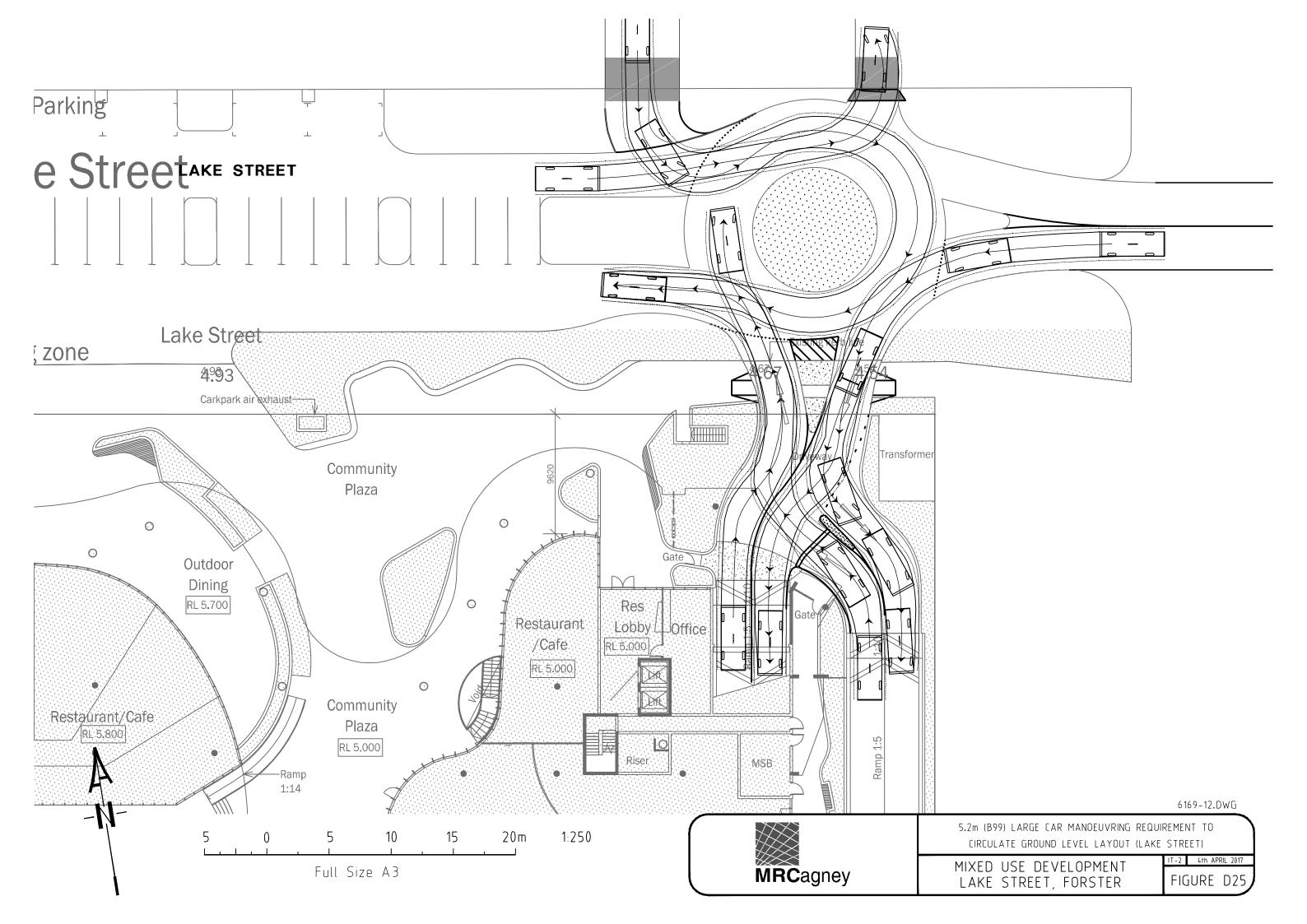



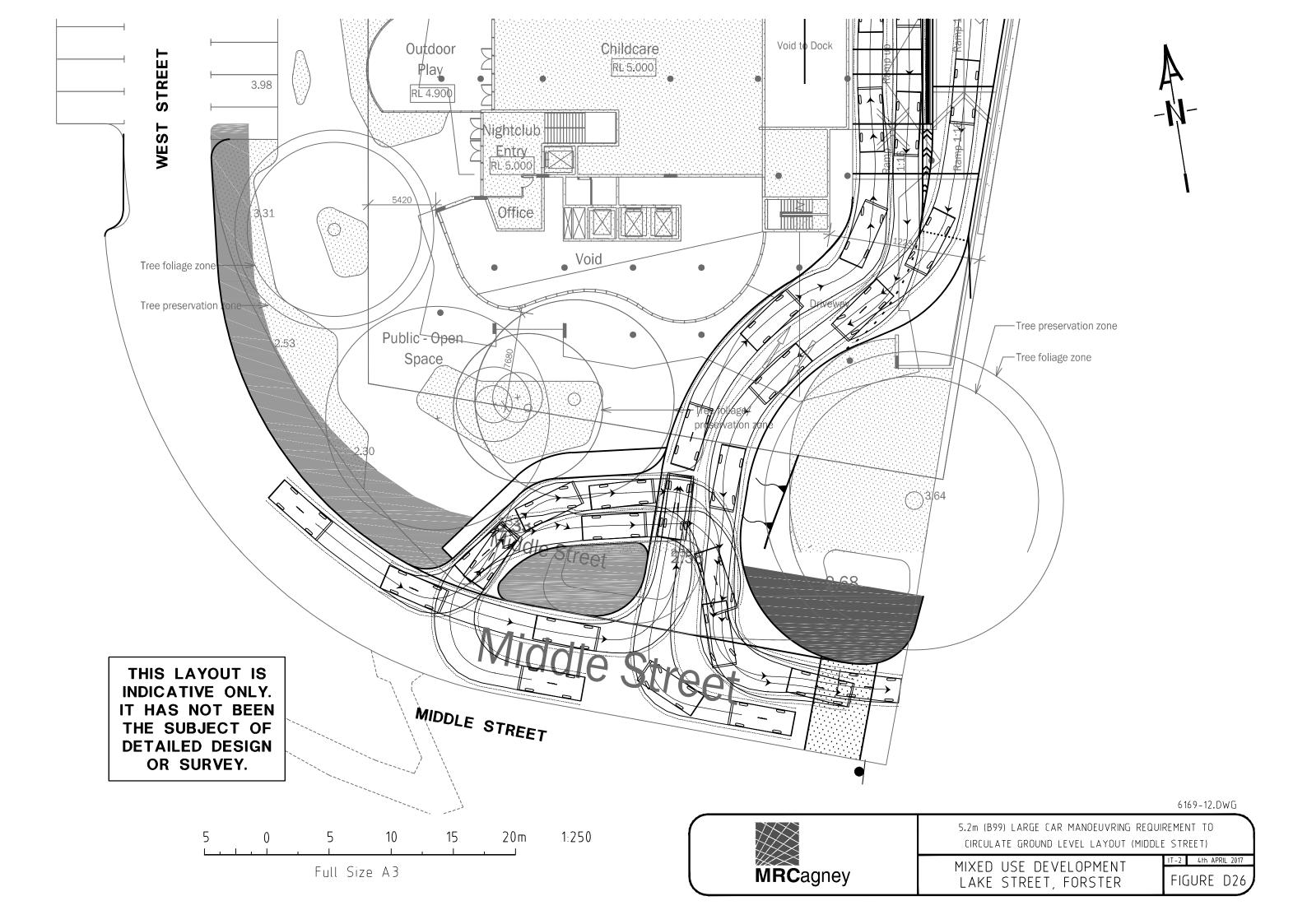



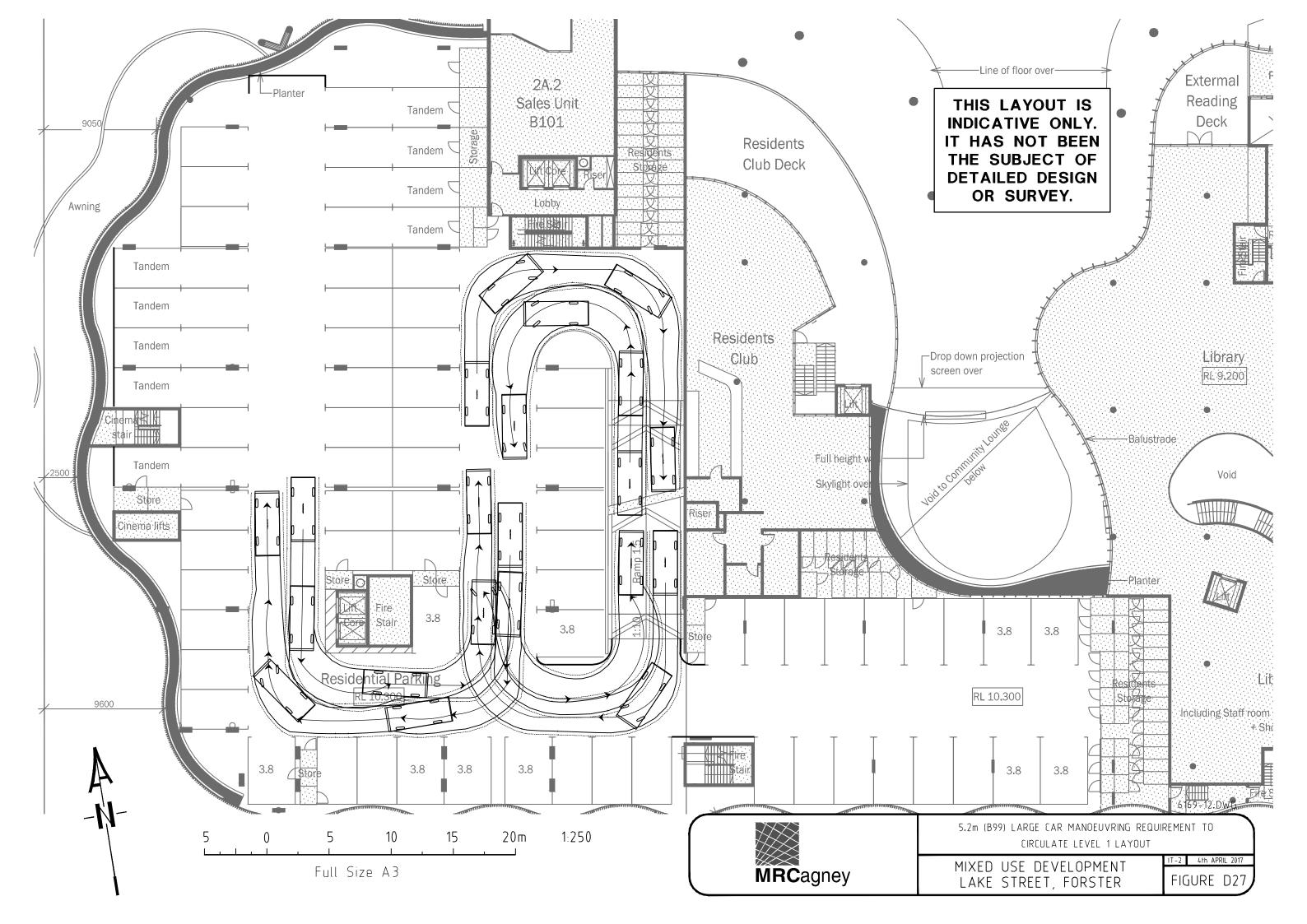



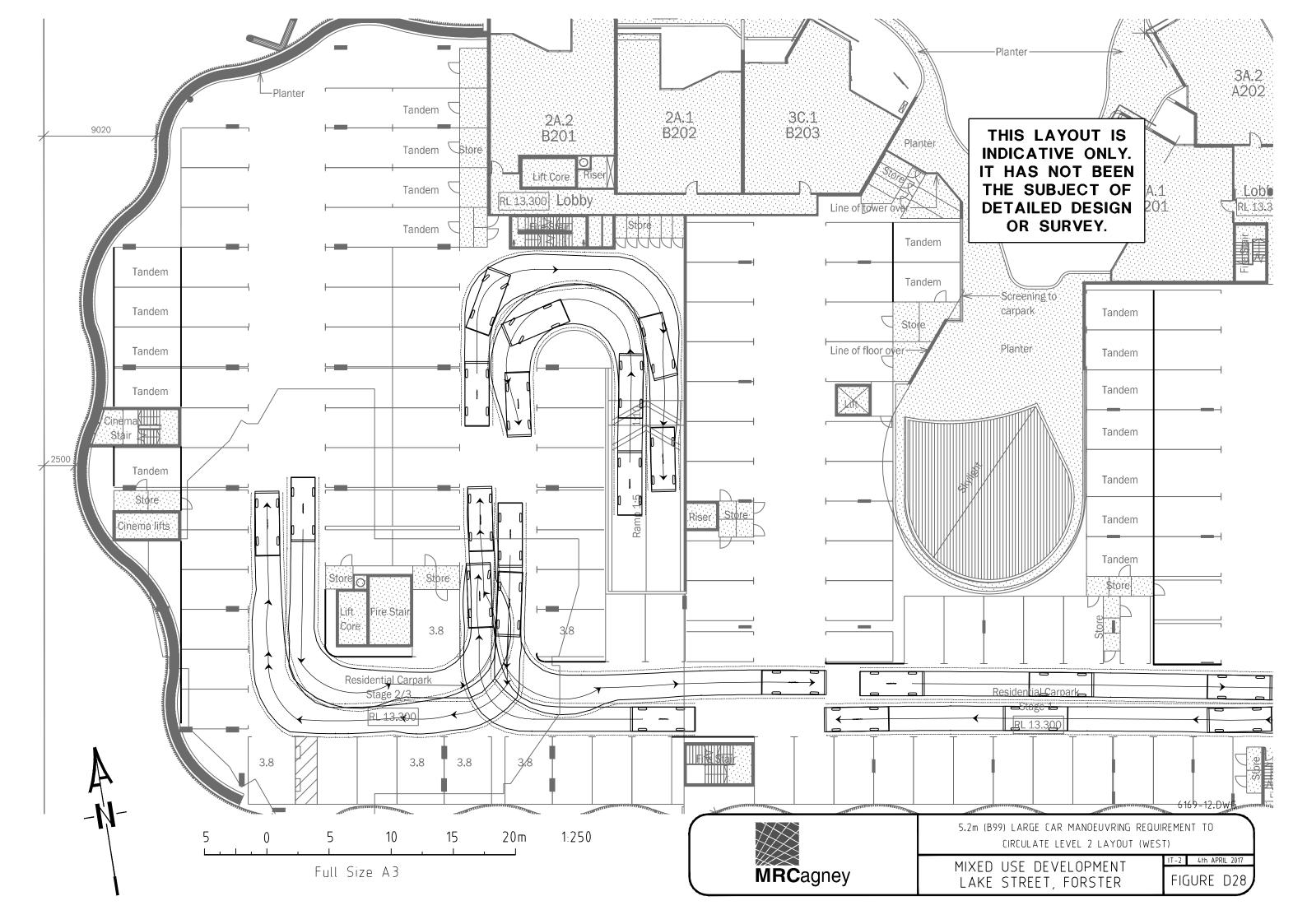



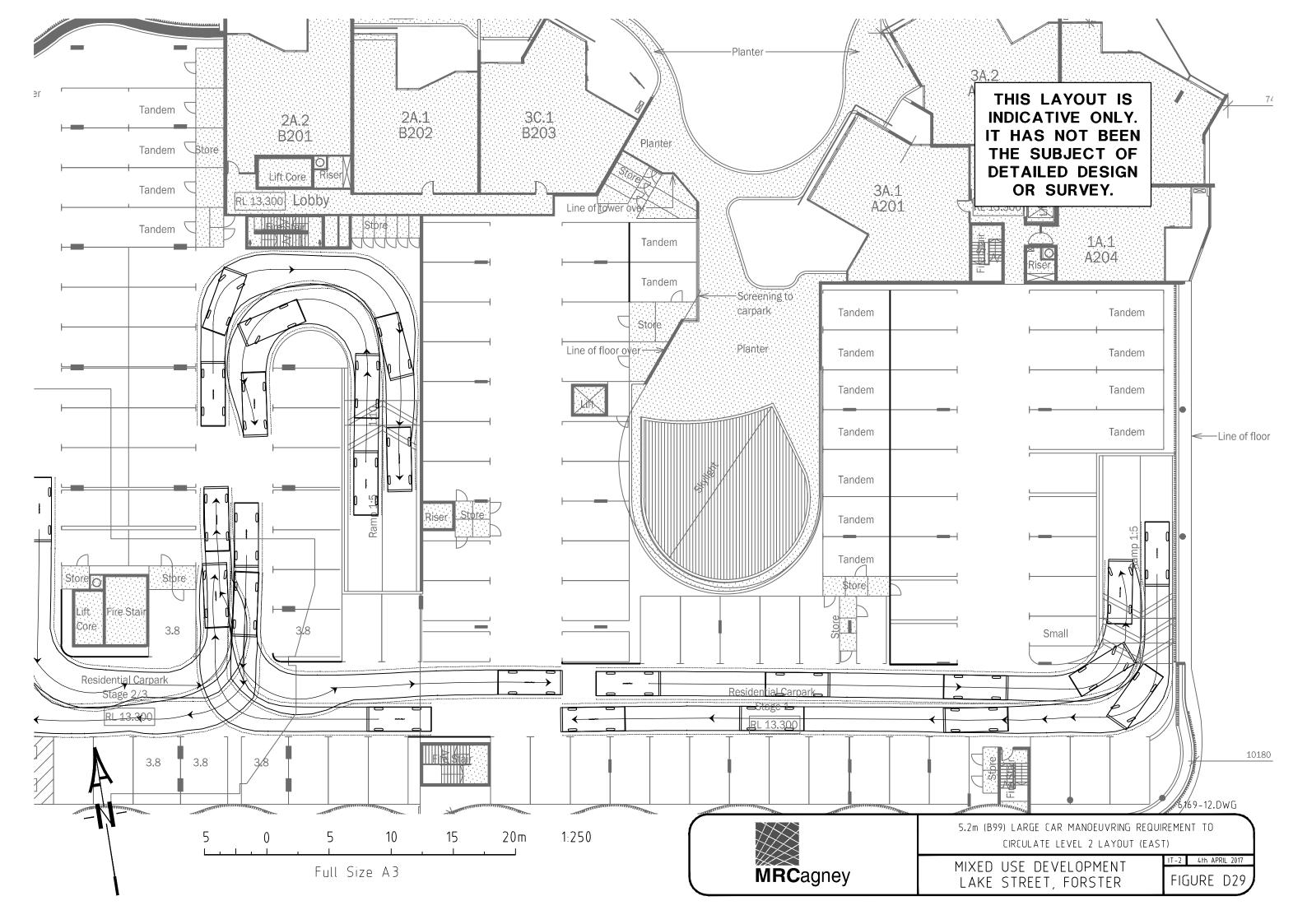



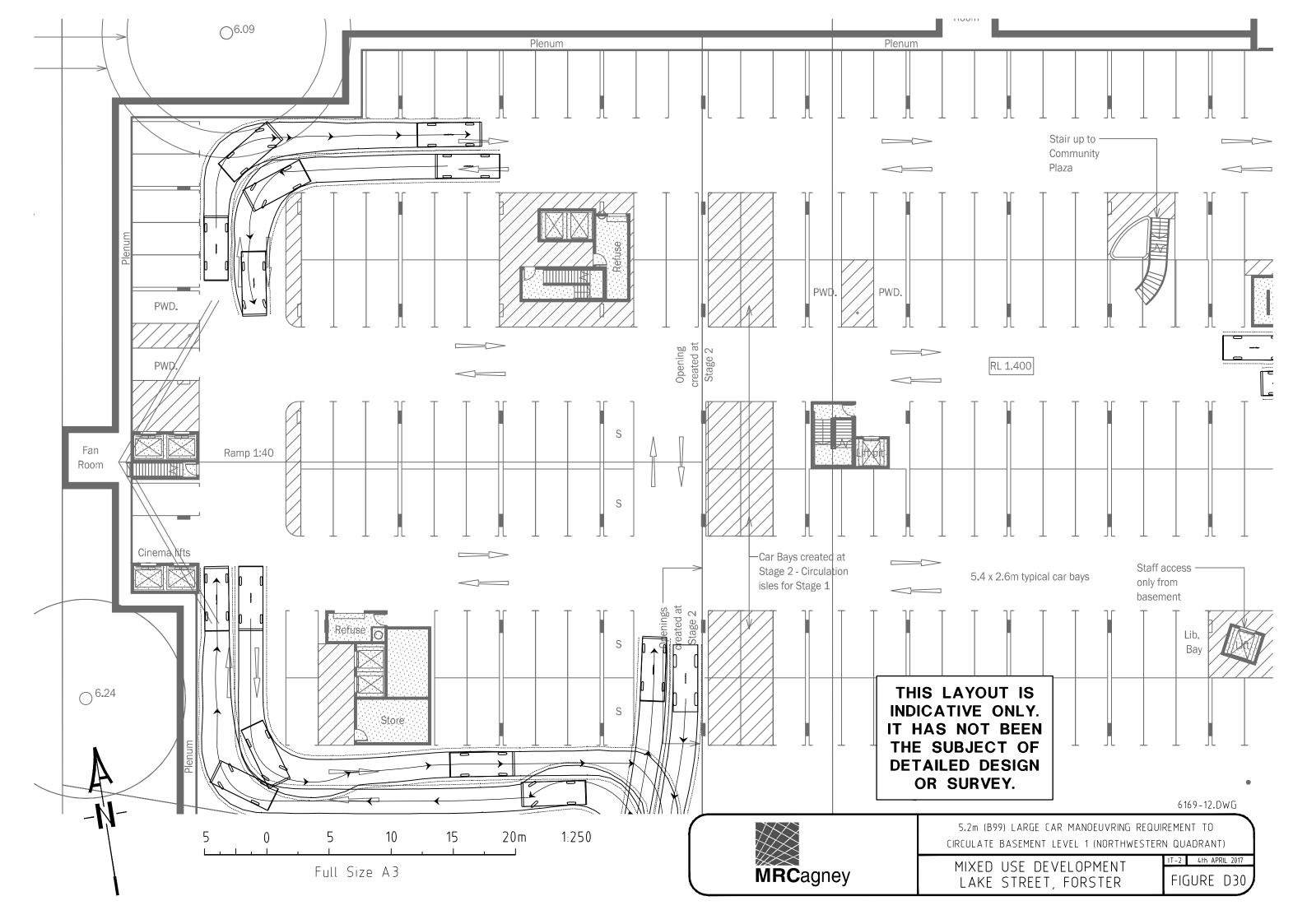



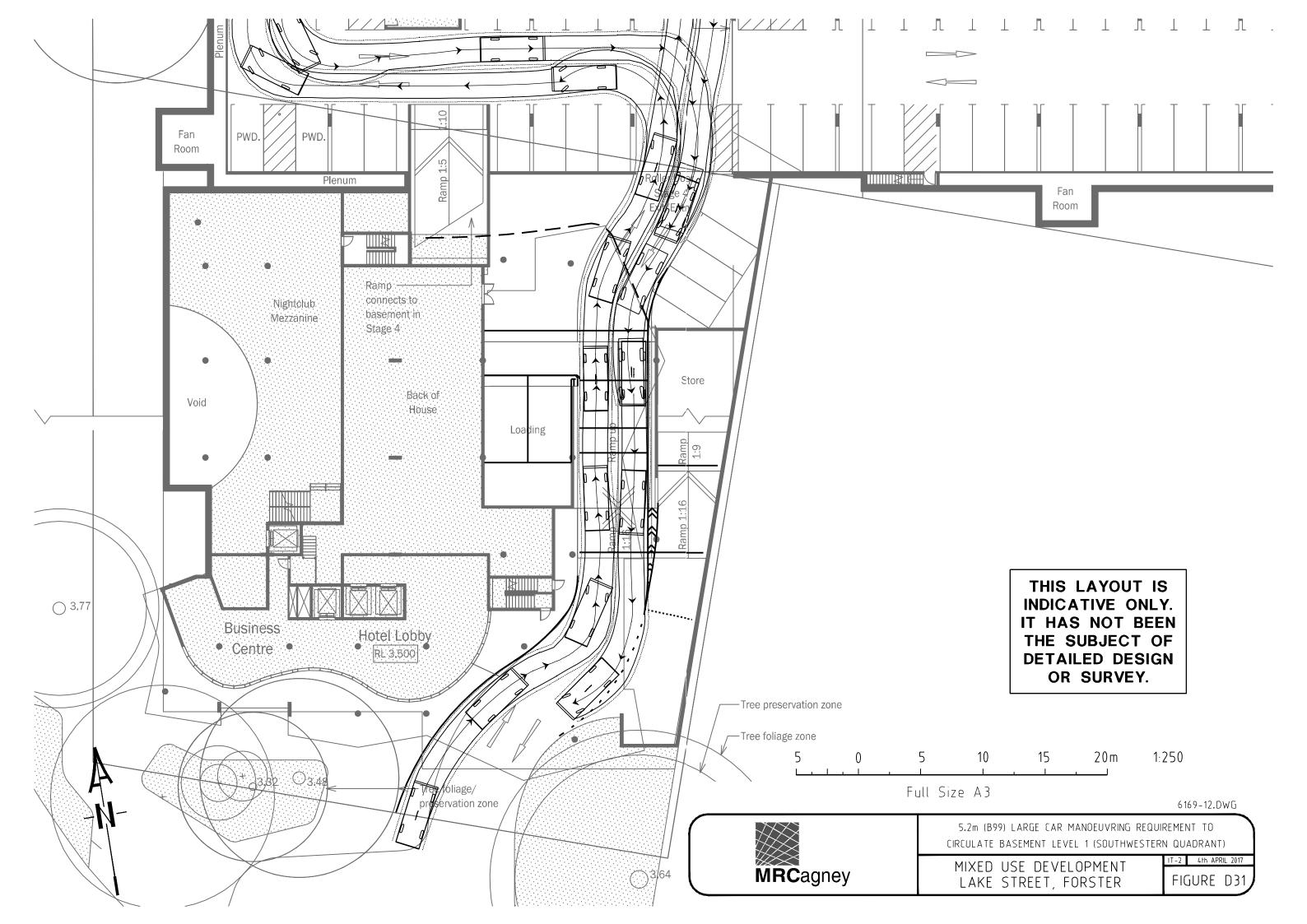



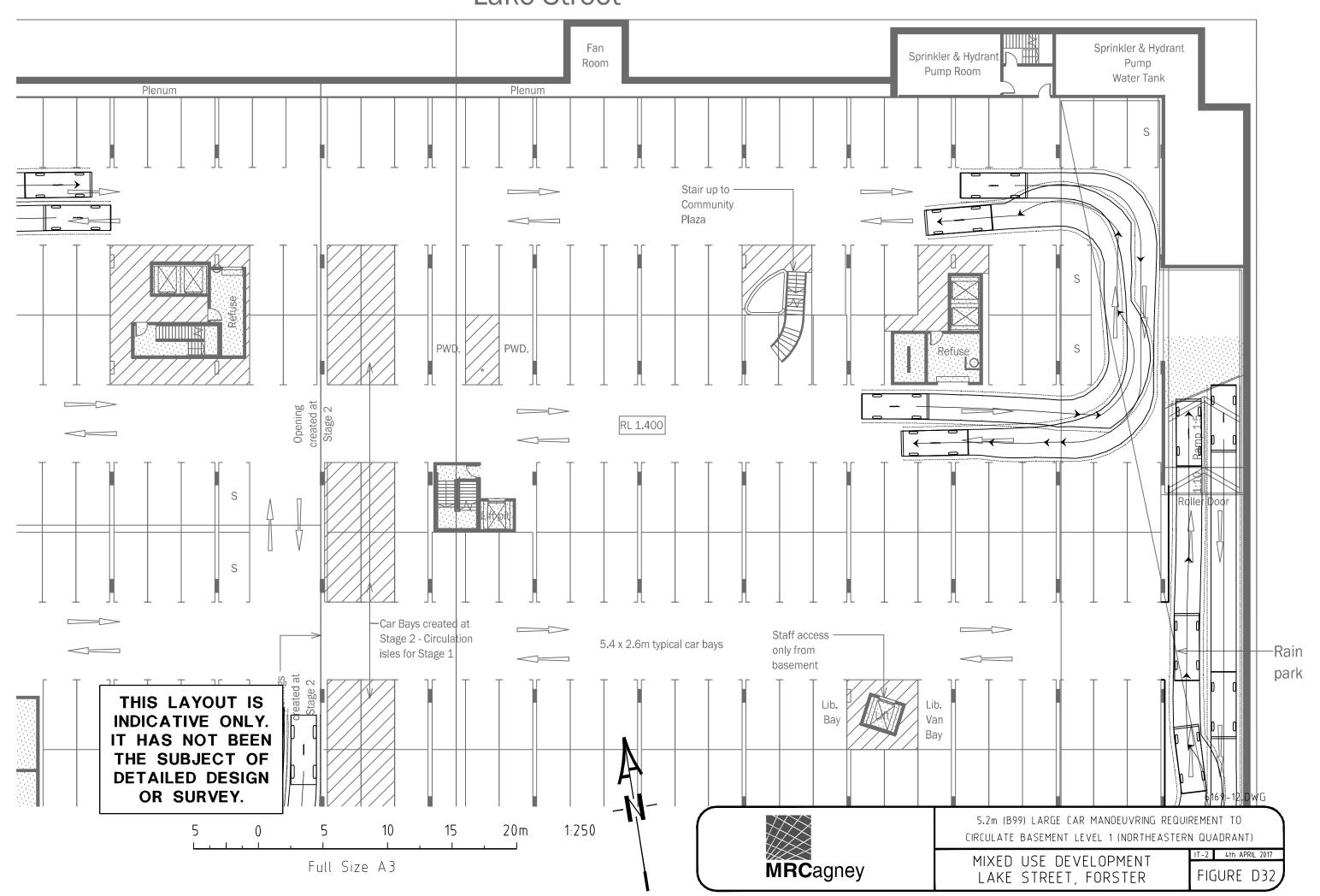



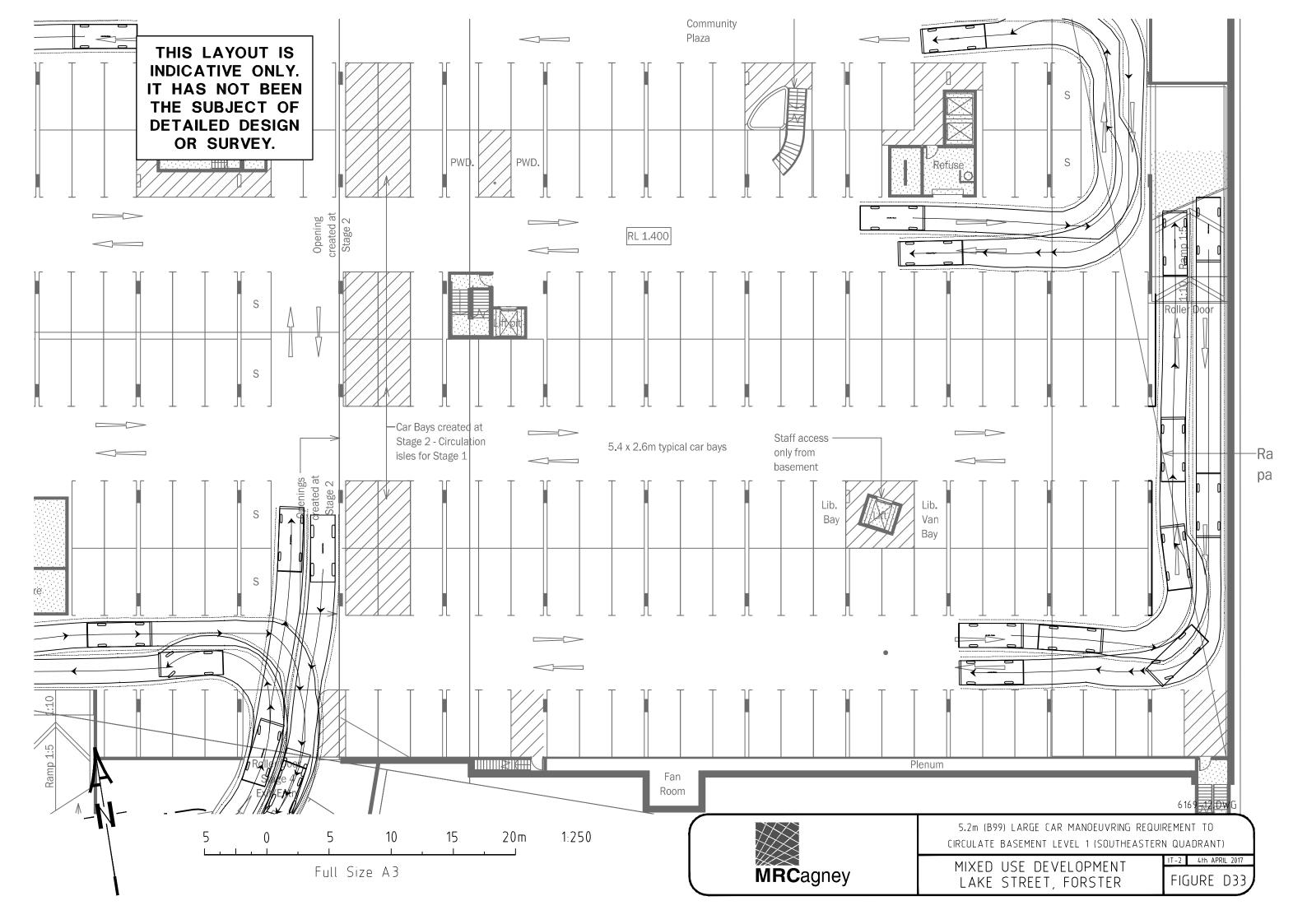



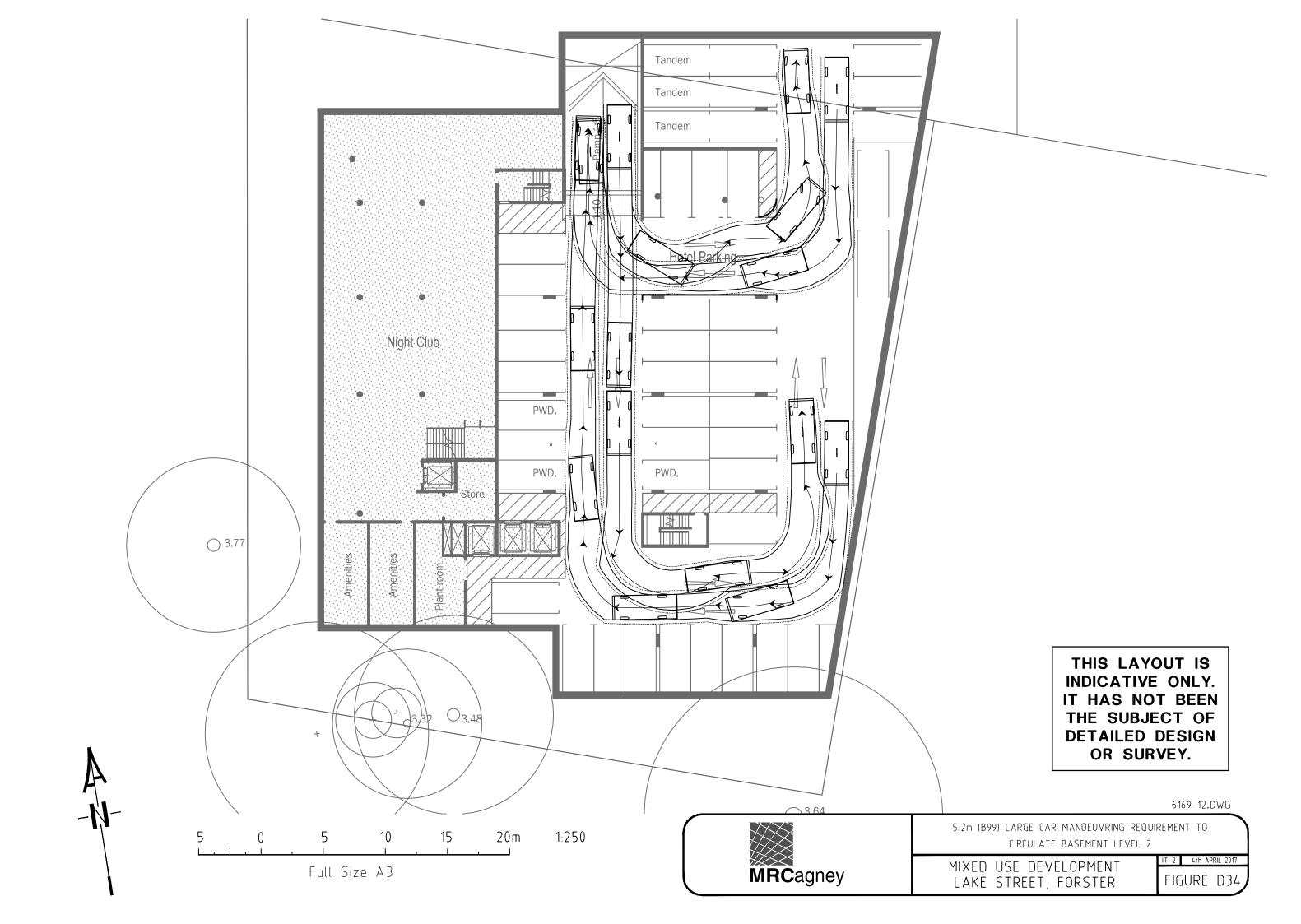



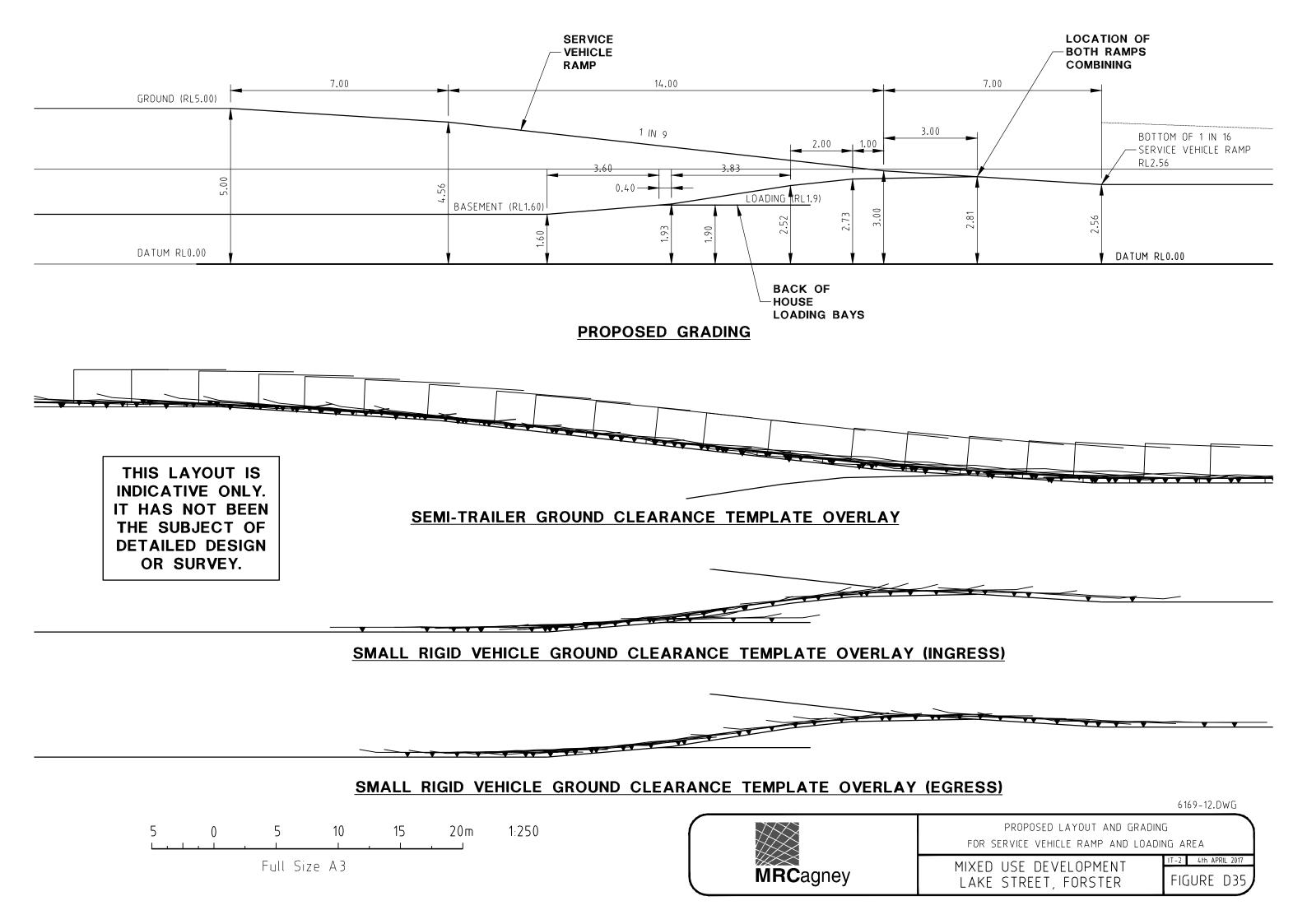



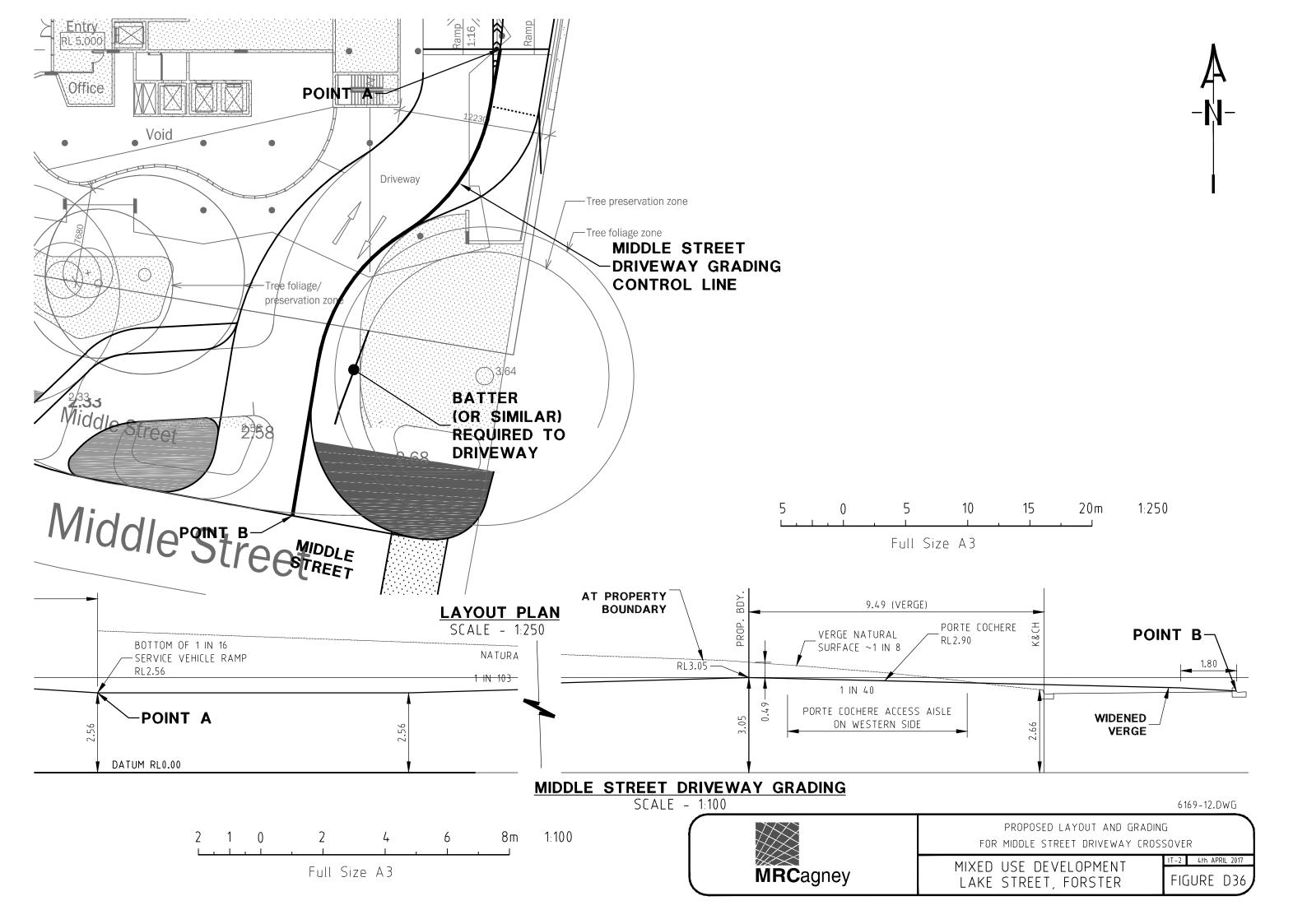


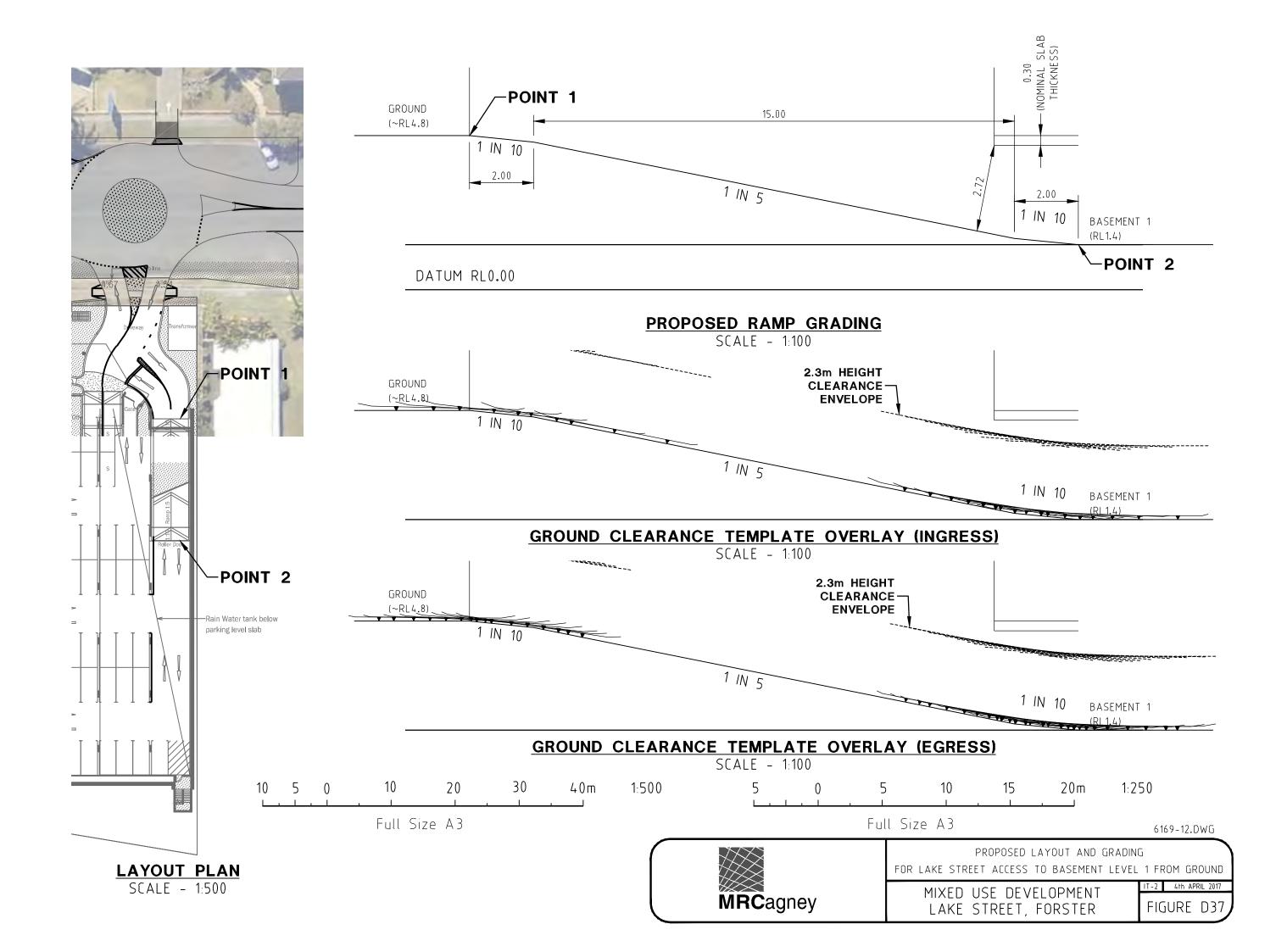



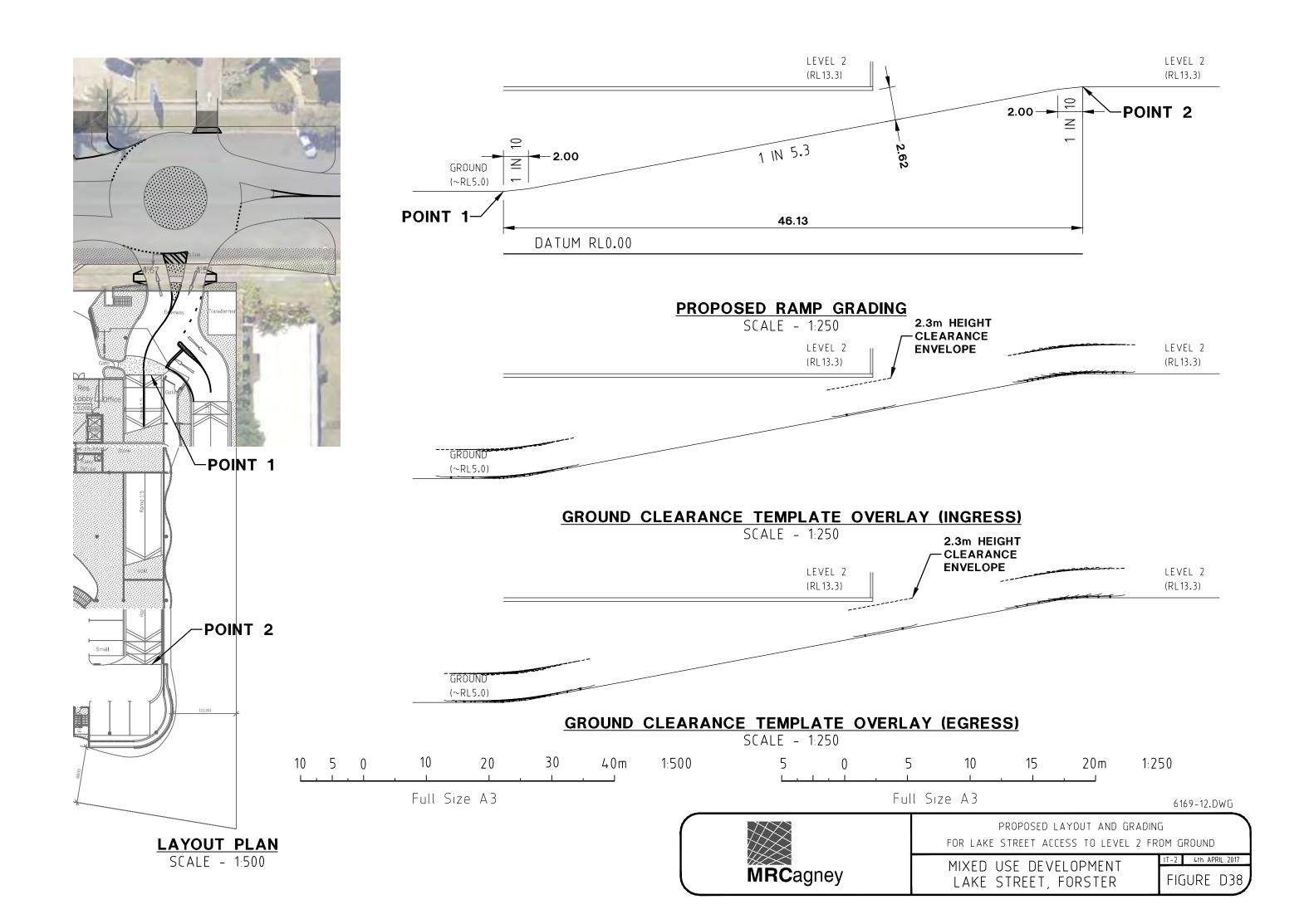



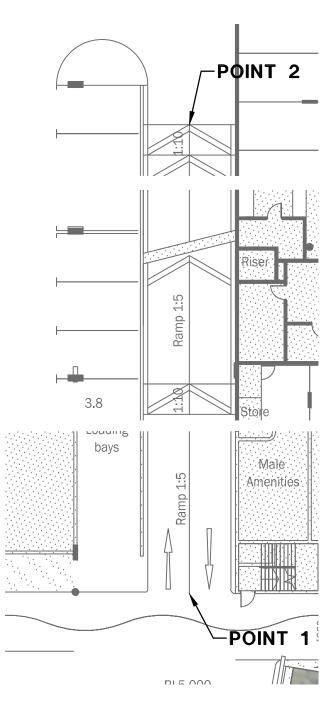



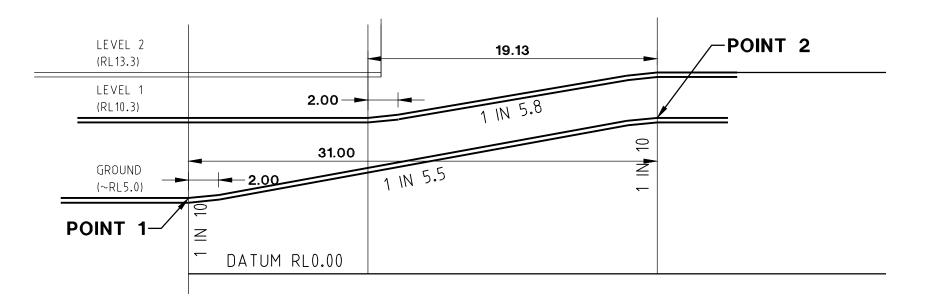


Lake Street

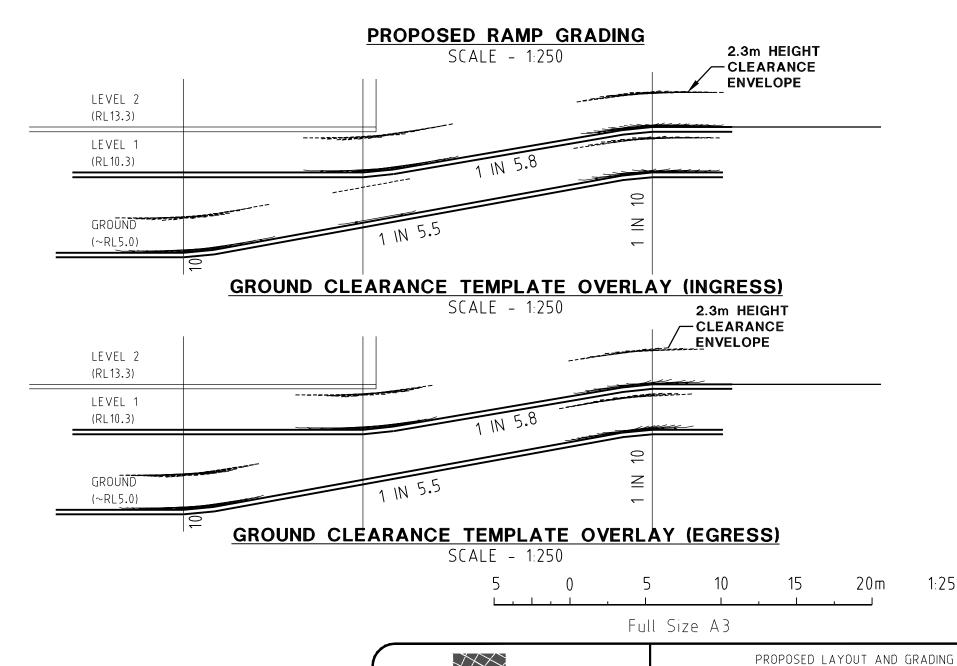









LAYOUT PLAN SCALE - 1:250

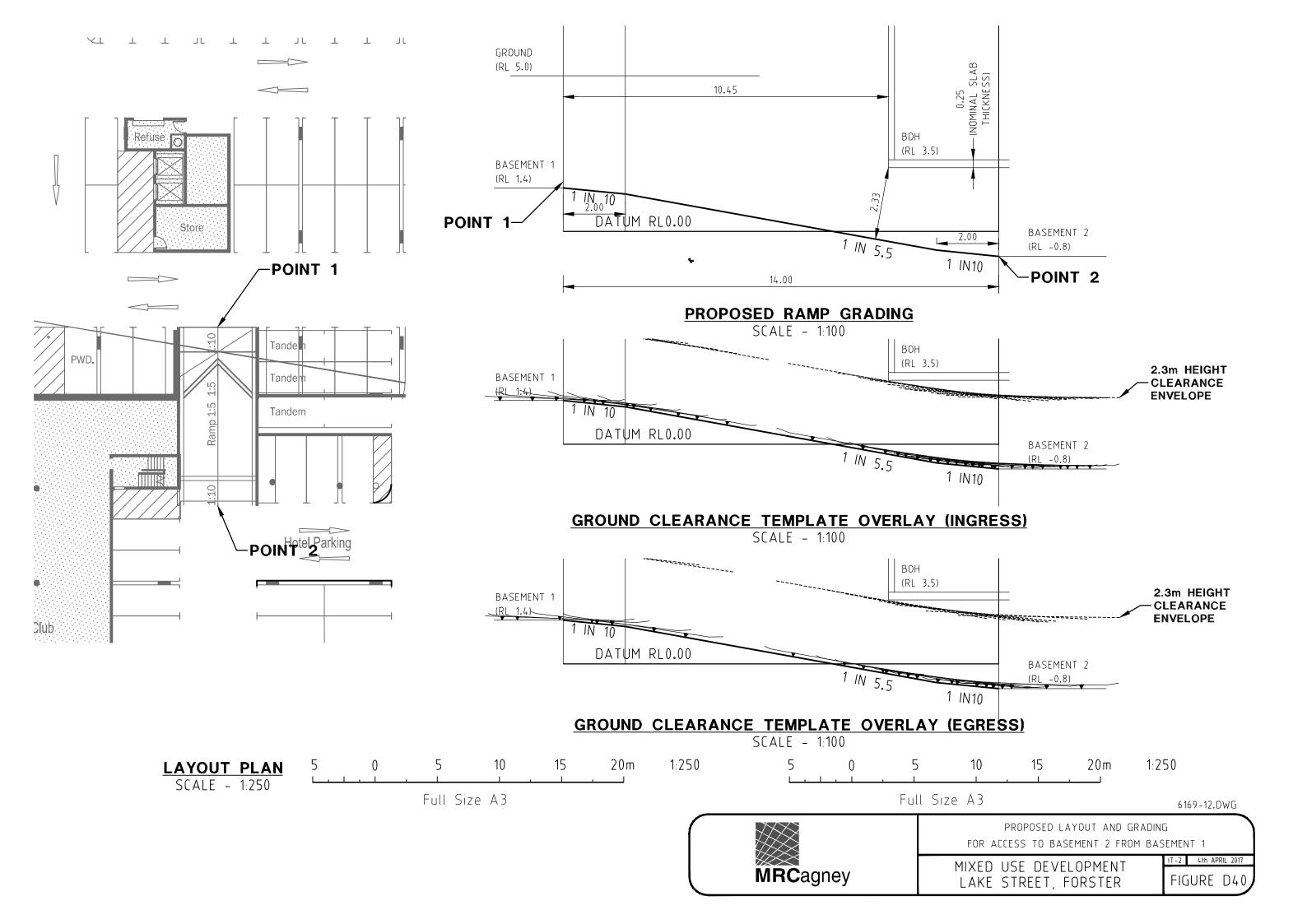




**MRC**agney

1:250

FROM WEST STREET AISLE TO LEVELS 1 AND 2


MIXED USE DEVELOPMENT

LAKE STREET, FORSTER

6169-12.DWG

IT-2 4th APRIL 2017

FIGURE D39



# Appendix E

Parking Survey Data



<u>Date / Day:</u> Thursday 16<sup>th</sup> March 2017 <u>Name of Surveyor:</u> Gavin Maberly-Smith

| Parking Zone<br>(Refer attached<br>Plan A) | 8:15am | 12:00pm | 3:00pm | 7:00pm |
|--------------------------------------------|--------|---------|--------|--------|
| А                                          | 3      | 3       | 2      | 4      |
| В                                          | 5      | 4       | 0      | 1      |
| С                                          | 0      | 0       | 2      | 1      |
| D                                          | 0      | 0       | 0      | 0      |
| Е                                          | 0      | 2       | 2      | 0      |
| F                                          | 0      | 0       | 0      | 0      |
| G                                          | 5      | 12      | 8      | 1      |
| Н                                          | 2      | 7       | 3      | 1      |
| I                                          | 0      | 0       | 0      | 0      |
| J                                          | 7      | 10      | 5      | 3      |



<u>Date / Day:</u> Friday 17<sup>th</sup> March 2017 <u>Name of Surveyor:</u> Gavin Maberly-Smith

| Parking Zone<br>(Refer attached<br>Plan A) | 8:00am                    | 12:00pm | 3:00pm | 7:00pm |
|--------------------------------------------|---------------------------|---------|--------|--------|
| А                                          | 4                         | 2       | 3      | 3      |
| В                                          | 3 (construction vehicles) | 3       | 1      | 1      |
| С                                          | 1                         | 2       | 1      | 0      |
| D                                          | 0                         | 0       | 0      | 0      |
| Е                                          | 0                         | 0       | 0      | 0      |
| F                                          | 0                         | 0       | 1      | 1      |
| G                                          | 4                         | 10      | 7      | 0      |
| Н                                          | 1                         | 4       | 4      | 1      |
| ı                                          | 0                         | 0       | 0      | 0      |
| J                                          | 4                         | 14      | 7      | 3      |



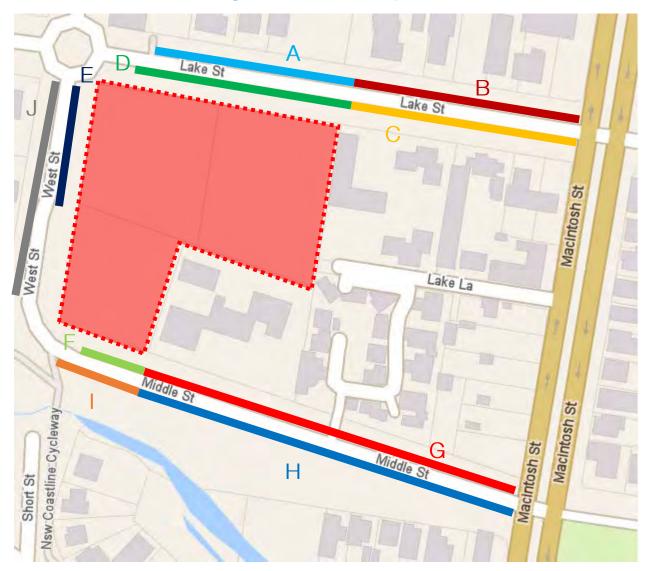
<u>Date / Day:</u> Saturday 18<sup>th</sup> March 2017 <u>Name of Surveyor:</u> Gavin Maberly-Smith

| Parking Zone<br>(Refer attached<br>Plan A) | 8:00am | 12:20pm | 3:00pm | 7:00pm |
|--------------------------------------------|--------|---------|--------|--------|
| А                                          | 4      | 2       | 0      | 2      |
| В                                          | 0      | 3       | 0      | 0      |
| С                                          | 0      | 0       | 0      | 3      |
| D                                          | 0      | 0       | 1      | 0      |
| Е                                          | 0      | 0       | 0      | 0      |
| F                                          | 1      | 0       | 0      | 0      |
| G                                          | 0      | 1       | 1      | 0      |
| Н                                          | 1      | 1       | 1      | 1      |
| ı                                          | 0      | 0       | 0      | 0      |
| J                                          | 2      | 3       | 3      | 5      |



<u>Date / Day:</u> Sunday 19<sup>th</sup> March 2017 <u>Name of Surveyor:</u> Gavin Maberly-Smith

| Parking Zone<br>(Refer attached<br>Plan A) | 8:15am | 12:00pm | 3:00pm | 7:00pm |
|--------------------------------------------|--------|---------|--------|--------|
| А                                          | 2      | 2       | 4      | 3      |
| В                                          | 2      | 3       | 1      | 0      |
| С                                          | 1      | 0       | 0      | 0      |
| D                                          | 0      | 0       | 2      | 0      |
| Е                                          | 0      | 0       | 0      | 0      |
| F                                          | 0      | 0       | 0      | 0      |
| G                                          | 0      | 1       | 1      | 0      |
| Н                                          | 1      | 1       | 1      | 1      |
| ı                                          | 0      | 0       | 0      | 0      |
| J                                          | 4      | 5       | 4      | 3      |




<u>Date / Day:</u> Monday 20<sup>th</sup> March 2017 <u>Name of Surveyor:</u> Gavin Maberly-Smith

| Parking Zone<br>(Refer attached<br>Plan A) | 8:20am | 12:00pm | 3:00pm | 6:40pm |
|--------------------------------------------|--------|---------|--------|--------|
| А                                          | 4      | 4       | 3      | 3      |
| В                                          | 3      | 5       | 3      | 0      |
| С                                          | 0      | 0       | 1      | 0      |
| D                                          | 0      | 0       | 0      | 1      |
| Е                                          | 2      | 2       | 1      | 0      |
| F                                          | 0      | 1       | 0      | 0      |
| G                                          | 7      | 9       | 7      | 1      |
| Н                                          | 5      | 11      | 4      | 1      |
| ı                                          | 0      | 0       | 0      | 0      |
| J                                          | 6      | 8       | 5      | 1      |



# Plan A: Kerbside Parking Utilisation Survey Zones





# Appendix F

Results of SIDRA Analyses



6169-TIA-001(1) 7

## **Intersection 1 [2028 Base AM] Movement Summary:**

# Site: 101 [2028 Base AM]

MacIntosh / Lake

| Moveme      | nt Performai    | nce - Vehicles |          |       |         |          |             |          |        |           |         |
|-------------|-----------------|----------------|----------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Mov         | OD              | Demai          | nd Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov             | Total          | HV       | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                 | veh/h          | %        | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Ma   | cIntosh Stree   | t (South)      |          |       |         |          |             |          |        |           |         |
| 1           | L2              | 22             | 0.0      | 0.572 | 40.9    | LOS D    | 17.1        | 122.9    | 0.88   | 0.77      | 37.2    |
| 2           | T1              | 670            | 3.1      | 0.572 | 35.5    | LOS D    | 17.1        | 122.9    | 0.88   | 0.76      | 37.9    |
| 3           | R2              | 26             | 15.4     | 0.311 | 69.4    | LOS E    | 1.6         | 12.5     | 1.00   | 0.72      | 27.7    |
| Approach    |                 | 718            | 3.5      | 0.572 | 36.9    | LOS D    | 17.1        | 122.9    | 0.88   | 0.76      | 37.3    |
| East: Lake  | e Street (East) | )              |          |       |         |          |             |          |        |           |         |
| 4           | L2              | 53             | 3.8      | 0.073 | 29.1    | LOS C    | 1.9         | 13.6     | 0.65   | 0.71      | 39.8    |
| 5           | T1              | 144            | 0.7      | 0.247 | 34.0    | LOS C    | 6.3         | 44.6     | 0.80   | 0.65      | 38.6    |
| 6           | R2              | 385            | 1.3      | 0.803 | 50.0    | LOS D    | 21.4        | 151.5    | 0.95   | 0.89      | 32.5    |
| Approach    |                 | 582            | 1.4      | 0.803 | 44.1    | LOS D    | 21.4        | 151.5    | 0.88   | 0.81      | 34.4    |
| North: Ma   | cIntosh Street  | t (North)      |          |       |         |          |             |          |        |           |         |
| 7           | L2              | 48             | 12.5     | 0.813 | 49.3    | LOS D    | 28.1        | 206.4    | 0.98   | 0.92      | 34.0    |
| 8           | T1              | 898            | 5.2      | 0.813 | 43.3    | LOS D    | 28.1        | 206.4    | 0.97   | 0.91      | 35.0    |
| 9           | R2              | 70             | 0.0      | 0.754 | 73.0    | LOS E    | 4.5         | 31.3     | 1.00   | 0.85      | 27.1    |
| Approach    |                 | 1016           | 5.2      | 0.813 | 45.6    | LOS D    | 28.1        | 206.4    | 0.97   | 0.91      | 34.3    |
| West: Lak   | e Street (Wes   | st)            |          |       |         |          |             |          |        |           |         |
| 10          | L2              | 5              | 0.0      | 0.015 | 28.1    | LOS C    | 0.1         | 0.9      | 0.85   | 0.64      | 40.3    |
| 11          | T1              | 39             | 0.0      | 0.160 | 51.3    | LOS D    | 2.1         | 14.5     | 0.93   | 0.69      | 32.6    |
| 12          | R2              | 83             | 1.2      | 0.361 | 58.8    | LOS E    | 4.6         | 32.4     | 0.96   | 0.77      | 30.1    |
| Approach    |                 | 127            | 8.0      | 0.361 | 55.3    | LOS E    | 4.6         | 32.4     | 0.94   | 0.74      | 31.2    |
| All Vehicle | es              | 2443           | 3.6      | 0.813 | 43.2    | LOS D    | 28.1        | 206.4    | 0.92   | 0.83      | 35.0    |

## **Intersection 1 [2028 Base PM] Movement Summary:**

# Site: 101 [2028 Base PM]

MacIntosh / Lake

| Movemen      | nt Performai  | nce - Vehicles |          |       |         |          |             |          |        |           |         |
|--------------|---------------|----------------|----------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Mov          | OD            | Demar          | nd Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID           | Mov           | Total          | HV       | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|              |               | veh/h          | %        | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Mad   | cIntosh Stree | t (South)      |          |       |         |          |             |          |        |           |         |
| 1            | L2            | 32             | 3.1      | 0.556 | 35.9    | LOS D    | 18.3        | 132.6    | 0.83   | 0.74      | 39.1    |
| 2            | T1            | 746            | 3.9      | 0.556 | 30.3    | LOS C    | 18.3        | 132.6    | 0.83   | 0.72      | 40.0    |
| 3            | R2            | 44             | 9.1      | 0.505 | 70.3    | LOS E    | 2.7         | 20.5     | 1.00   | 0.74      | 27.5    |
| Approach     |               | 822            | 4.1      | 0.556 | 32.7    | LOS C    | 18.3        | 132.6    | 0.84   | 0.73      | 39.0    |
| East: Lake   | Street (East) | )              |          |       |         |          |             |          |        |           |         |
| 4            | L2            | 52             | 0.0      | 0.084 | 34.7    | LOS C    | 2.1         | 14.4     | 0.72   | 0.72      | 37.6    |
| 5            | T1            | 77             | 2.6      | 0.172 | 39.5    | LOS D    | 3.6         | 25.7     | 0.84   | 0.66      | 36.5    |
| 6            | R2            | 270            | 3.3      | 0.670 | 50.7    | LOS D    | 14.4        | 103.6    | 0.96   | 0.83      | 32.3    |
| Approach     |               | 399            | 2.8      | 0.670 | 46.4    | LOS D    | 14.4        | 103.6    | 0.90   | 0.78      | 33.6    |
| North: Mac   | Intosh Street | t (North)      |          |       |         |          |             |          |        |           |         |
| 7            | L2            | 31             | 35.5     | 0.650 | 38.5    | LOS D    | 22.3        | 163.8    | 0.88   | 0.78      | 37.6    |
| 8            | T1            | 872            | 3.7      | 0.650 | 32.1    | LOS C    | 22.3        | 163.8    | 0.87   | 0.77      | 39.2    |
| 9            | R2            | 52             | 1.9      | 0.568 | 70.5    | LOS E    | 3.2         | 22.9     | 1.00   | 0.76      | 27.6    |
| Approach     |               | 955            | 4.6      | 0.650 | 34.4    | LOS C    | 22.3        | 163.8    | 0.88   | 0.77      | 38.3    |
| West: Lake   | e Street (Wes | st)            |          |       |         |          |             |          |        |           |         |
| 10           | L2            | 11             | 0.0      | 0.032 | 28.4    | LOS C    | 0.3         | 2.2      | 0.85   | 0.67      | 40.1    |
| 11           | T1            | 60             | 0.0      | 0.231 | 51.0    | LOS D    | 3.2         | 22.4     | 0.93   | 0.71      | 32.7    |
| 12           | R2            | 164            | 1.2      | 0.668 | 61.1    | LOS E    | 9.5         | 67.3     | 1.00   | 0.83      | 29.6    |
| Approach     |               | 235            | 0.9      | 0.668 | 57.0    | LOS E    | 9.5         | 67.3     | 0.98   | 0.79      | 30.7    |
| All Vehicles | S             | 2411           | 3.8      | 0.670 | 38.0    | LOS D    | 22.3        | 163.8    | 0.88   | 0.76      | 36.8    |

## **Intersection 1 [2028 Design AM] Movement Summary:**

# Site: 101 [2028 Design AM]

MacIntosh / Lake

| $\overline{}$ |                 | nce - Vehicles |          | Jan | or the selected of | atput coquerice |             |          |        |           |         |
|---------------|-----------------|----------------|----------|-----------------------------------------|--------------------|-----------------|-------------|----------|--------|-----------|---------|
| Mov           | OD              | Demar          | nd Flows | Deg.                                    | Average            | Level of        | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID            | Mov             | Total          | HV       | Satn                                    | Delay              | Service         | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|               |                 | veh/h          | %        | v/c                                     | sec                |                 | veh         | m        |        | per veh   | km/h    |
| South: Ma     | acIntosh Stree  | t (South)      |          |                                         |                    |                 |             |          |        |           |         |
| 1             | L2              | 24             | 0.0      | 0.573                                   | 41.0               | LOS D           | 17.2        | 123.3    | 0.88   | 0.77      | 37.2    |
| 2             | T1              | 670            | 3.1      | 0.573                                   | 35.5               | LOS D           | 17.2        | 123.3    | 0.88   | 0.76      | 37.8    |
| 3             | R2              | 26             | 15.4     | 0.311                                   | 69.4               | LOS E           | 1.6         | 12.5     | 1.00   | 0.72      | 27.7    |
| Approach      |                 | 720            | 3.5      | 0.573                                   | 36.9               | LOS D           | 17.2        | 123.3    | 0.88   | 0.76      | 37.3    |
| East: Lak     | e Street (East) | )              |          |                                         |                    |                 |             |          |        |           |         |
| 4             | L2              | 53             | 3.8      | 0.073                                   | 29.1               | LOS C           | 1.9         | 13.6     | 0.65   | 0.71      | 39.8    |
| 5             | T1              | 144            | 0.7      | 0.247                                   | 34.0               | LOS C           | 6.3         | 44.6     | 0.80   | 0.65      | 38.6    |
| 6             | R2              | 385            | 1.3      | 0.803                                   | 50.0               | LOS D           | 21.4        | 151.5    | 0.95   | 0.89      | 32.5    |
| Approach      |                 | 582            | 1.4      | 0.803                                   | 44.1               | LOS D           | 21.4        | 151.5    | 0.88   | 0.81      | 34.4    |
| North: Ma     | cIntosh Stree   | t (North)      |          |                                         |                    |                 |             |          |        |           |         |
| 7             | L2              | 48             | 12.5     | 0.813                                   | 49.3               | LOS D           | 28.1        | 206.4    | 0.98   | 0.92      | 34.0    |
| 8             | T1              | 898            | 5.2      | 0.813                                   | 43.3               | LOS D           | 28.1        | 206.4    | 0.97   | 0.91      | 35.0    |
| 9             | R2              | 70             | 0.0      | 0.754                                   | 73.0               | LOS E           | 4.5         | 31.3     | 1.00   | 0.85      | 27.1    |
| Approach      |                 | 1016           | 5.2      | 0.813                                   | 45.6               | LOS D           | 28.1        | 206.4    | 0.97   | 0.91      | 34.3    |
| West: Lak     | ce Street (Wes  | st)            |          |                                         |                    |                 |             |          |        |           |         |
| 10            | L2              | 5              | 0.0      | 0.015                                   | 28.1               | LOS C           | 0.1         | 0.9      | 0.85   | 0.64      | 40.3    |
| 11            | T1              | 39             | 0.0      | 0.160                                   | 51.3               | LOS D           | 2.1         | 14.5     | 0.93   | 0.69      | 32.6    |
| 12            | R2              | 96             | 1.0      | 0.417                                   | 59.2               | LOS E           | 5.3         | 37.7     | 0.97   | 0.78      | 30.0    |
| Approach      |                 | 140            | 0.7      | 0.417                                   | 55.9               | LOS E           | 5.3         | 37.7     | 0.95   | 0.75      | 31.0    |
| All Vehicle   | es              | 2458           | 3.5      | 0.813                                   | 43.3               | LOS D           | 28.1        | 206.4    | 0.92   | 0.83      | 34.9    |

## **Intersection 1 [2028 Design PM] Movement Summary:**

# Site: 101 [2028 Design PM]

MacIntosh / Lake

|             | <u> </u>        | nce - Vehicles | c . bounc | z a. c givoir i | or the selected of | 23 quoi 100 |             |          |        |           |         |
|-------------|-----------------|----------------|-----------|-----------------|--------------------|-------------|-------------|----------|--------|-----------|---------|
| Mov         | OD              | Demar          | nd Flows  | Deg.            | Average            | Level of    | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov             | Total          | HV        | Satn            | Delay              | Service     | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                 | veh/h          | %         | v/c             | sec                |             | veh         | m        |        | per veh   | km/h    |
| South: Ma   | acIntosh Stree  | t (South)      |           |                 |                    |             |             |          |        |           |         |
| 1           | L2              | 40             | 2.5       | 0.586           | 37.8               | LOS D       | 19.1        | 138.0    | 0.86   | 0.76      | 38.3    |
| 2           | T1              | 746            | 3.9       | 0.586           | 32.2               | LOS C       | 19.1        | 138.0    | 0.85   | 0.75      | 39.2    |
| 3           | R2              | 44             | 9.1       | 0.505           | 70.3               | LOS E       | 2.7         | 20.5     | 1.00   | 0.74      | 27.5    |
| Approach    |                 | 830            | 4.1       | 0.586           | 34.4               | LOS C       | 19.1        | 138.0    | 0.86   | 0.75      | 38.3    |
| East: Lak   | e Street (East) |                |           |                 |                    |             |             |          |        |           |         |
| 4           | L2              | 52             | 0.0       | 0.086           | 35.4               | LOS D       | 2.1         | 14.6     | 0.73   | 0.72      | 37.3    |
| 5           | T1              | 77             | 2.6       | 0.178           | 40.4               | LOS D       | 3.6         | 26.1     | 0.85   | 0.66      | 36.1    |
| 6           | R2              | 270            | 3.3       | 0.696           | 52.2               | LOS D       | 14.7        | 105.9    | 0.97   | 0.84      | 31.8    |
| Approach    |                 | 399            | 2.8       | 0.696           | 47.8               | LOS D       | 14.7        | 105.9    | 0.91   | 0.79      | 33.2    |
| North: Ma   | cIntosh Street  | (North)        |           |                 |                    |             |             |          |        |           |         |
| 7           | L2              | 31             | 35.5      | 0.679           | 40.3               | LOS D       | 22.9        | 168.3    | 0.90   | 0.80      | 36.9    |
| 8           | T1              | 872            | 3.7       | 0.679           | 33.9               | LOS C       | 22.9        | 168.3    | 0.89   | 0.79      | 38.5    |
| 9           | R2              | 52             | 1.9       | 0.568           | 70.5               | LOS E       | 3.2         | 22.9     | 1.00   | 0.76      | 27.6    |
| Approach    |                 | 955            | 4.6       | 0.679           | 36.1               | LOS D       | 22.9        | 168.3    | 0.90   | 0.79      | 37.6    |
| West: Lak   | ce Street (Wes  | it)            |           |                 |                    |             |             |          |        |           |         |
| 10          | L2              | 11             | 0.0       | 0.028           | 26.9               | LOS C       | 0.3         | 2.1      | 0.82   | 0.67      | 40.8    |
| 11          | T1              | 60             | 0.0       | 0.194           | 47.7               | LOS D       | 3.1         | 21.6     | 0.91   | 0.69      | 33.7    |
| 12          | R2              | 193            | 1.0       | 0.661           | 58.2               | LOS E       | 10.9        | 77.3     | 0.99   | 0.83      | 30.3    |
| Approach    |                 | 264            | 0.8       | 0.661           | 54.6               | LOS D       | 10.9        | 77.3     | 0.97   | 0.79      | 31.3    |
| All Vehicle | es              | 2448           | 3.7       | 0.696           | 39.4               | LOS D       | 22.9        | 168.3    | 0.89   | 0.77      | 36.3    |

# **Intersection 2 [2028 Base AM] Movement Summary:**

**♥** Site: 102 [2028 Base AM]

| Prop.  | Effective                                                    | Average                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Queued | Stop Rate                                                    | Speed                                                                                                                                                                                                                                                         |
|        | per veh                                                      | km/h                                                                                                                                                                                                                                                          |
|        |                                                              |                                                                                                                                                                                                                                                               |
| 0.42   | 0.56                                                         | 52.7                                                                                                                                                                                                                                                          |
| 0.42   | 0.56                                                         | 53.7                                                                                                                                                                                                                                                          |
| 0.42   | 0.56                                                         | 53.5                                                                                                                                                                                                                                                          |
| 0.42   | 0.56                                                         | 54.0                                                                                                                                                                                                                                                          |
| 0.42   | 0.56                                                         | 53.4                                                                                                                                                                                                                                                          |
|        |                                                              |                                                                                                                                                                                                                                                               |
| 0.16   | 0.56                                                         | 52.4                                                                                                                                                                                                                                                          |
| 0.16   | 0.56                                                         | 53.6                                                                                                                                                                                                                                                          |
| 0.16   | 0.56                                                         | 53.1                                                                                                                                                                                                                                                          |
| 0.16   | 0.56                                                         | 53.9                                                                                                                                                                                                                                                          |
| 0.16   | 0.56                                                         | 53.3                                                                                                                                                                                                                                                          |
|        |                                                              |                                                                                                                                                                                                                                                               |
| 0.24   | 0.55                                                         | 53.1                                                                                                                                                                                                                                                          |
| 0.24   | 0.55                                                         | 54.0                                                                                                                                                                                                                                                          |
| 0.24   | 0.55                                                         | 53.7                                                                                                                                                                                                                                                          |
| 0.24   | 0.55                                                         | 54.3                                                                                                                                                                                                                                                          |
| 0.24   | 0.55                                                         | 53.3                                                                                                                                                                                                                                                          |
|        |                                                              |                                                                                                                                                                                                                                                               |
| 0.34   | 0.54                                                         | 52.3                                                                                                                                                                                                                                                          |
| 0.34   | 0.54                                                         | 53.6                                                                                                                                                                                                                                                          |
| 0.34   | 0.54                                                         | 53.3                                                                                                                                                                                                                                                          |
| 0.34   | 0.54                                                         | 54.0                                                                                                                                                                                                                                                          |
| 0.34   | 0.54                                                         | 53.4                                                                                                                                                                                                                                                          |
| 0.25   | 0.55                                                         | 53.3                                                                                                                                                                                                                                                          |
|        | 0.24<br>0.24<br>0.24<br>0.24<br>0.34<br>0.34<br>0.34<br>0.34 | 0.24     0.55       0.24     0.55       0.24     0.55       0.24     0.55       0.34     0.54       0.34     0.54       0.34     0.54       0.34     0.54       0.34     0.54       0.34     0.54       0.34     0.54       0.34     0.54       0.34     0.54 |

# **Intersection 2 [2028 Base PM] Movement Summary:**

**♥** Site: 102 [2028 Base PM]

| Roundabe    | out               |               |          |       |         |          |             |          |        |           |         |
|-------------|-------------------|---------------|----------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Movemer     | nt Performand     | ce - Vehicles |          |       |         |          |             |          |        |           |         |
| Mov         | OD                | Demar         | nd Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov               | Total         | HV       | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                   | veh/h         | %        | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: We   | est Street (Sout  | h)            |          |       |         |          |             |          |        |           |         |
| 1           | L2                | 22            | 4.5      | 0.055 | 5.4     | LOS A    | 0.3         | 1.9      | 0.35   | 0.54      | 52.8    |
| 2           | T1                | 32            | 3.1      | 0.055 | 5.7     | LOS A    | 0.3         | 1.9      | 0.35   | 0.54      | 53.8    |
| 3           | R2                | 6             | 0.0      | 0.055 | 9.1     | LOS A    | 0.3         | 1.9      | 0.35   | 0.54      | 53.6    |
| 3u          | U                 | 1             | 0.0      | 0.055 | 10.8    | LOS B    | 0.3         | 1.9      | 0.35   | 0.54      | 54.2    |
| Approach    |                   | 61            | 3.3      | 0.055 | 6.0     | LOS A    | 0.3         | 1.9      | 0.35   | 0.54      | 53.4    |
| East: Lake  | e Street (East)   |               |          |       |         |          |             |          |        |           |         |
| 4           | L2                | 4             | 25.0     | 0.124 | 5.1     | LOS A    | 0.7         | 4.7      | 0.15   | 0.55      | 51.6    |
| 5           | T1                | 86            | 2.3      | 0.124 | 4.9     | LOS A    | 0.7         | 4.7      | 0.15   | 0.55      | 53.6    |
| 6           | R2                | 77            | 2.6      | 0.124 | 8.3     | LOS A    | 0.7         | 4.7      | 0.15   | 0.55      | 53.1    |
| 6u          | U                 | 1             | 0.0      | 0.124 | 10.0    | LOS B    | 0.7         | 4.7      | 0.15   | 0.55      | 53.9    |
| Approach    |                   | 168           | 3.0      | 0.124 | 6.5     | LOS A    | 0.7         | 4.7      | 0.15   | 0.55      | 53.3    |
| North: We   | est Street (North | 1)            |          |       |         |          |             |          |        |           |         |
| 7           | L2                | 102           | 1.0      | 0.110 | 5.1     | LOS A    | 0.6         | 4.0      | 0.32   | 0.55      | 53.2    |
| 8           | T1                | 5             | 0.0      | 0.110 | 5.4     | LOS A    | 0.6         | 4.0      | 0.32   | 0.55      | 54.1    |
| 9           | R2                | 17            | 0.0      | 0.110 | 8.9     | LOS A    | 0.6         | 4.0      | 0.32   | 0.55      | 53.8    |
| 9u          | U                 | 4             | 0.0      | 0.110 | 10.6    | LOS B    | 0.6         | 4.0      | 0.32   | 0.55      | 54.4    |
| Approach    |                   | 128           | 8.0      | 0.110 | 5.8     | LOS A    | 0.6         | 4.0      | 0.32   | 0.55      | 53.3    |
| West: Lak   | e Street (West)   | ı             |          |       |         |          |             |          |        |           |         |
| 10          | L2                | 15            | 0.0      | 0.128 | 5.3     | LOS A    | 0.6         | 4.6      | 0.29   | 0.51      | 52.9    |
| 11          | T1                | 124           | 8.0      | 0.128 | 5.4     | LOS A    | 0.6         | 4.6      | 0.29   | 0.51      | 54.0    |
| 12          | R2                | 2             | 0.0      | 0.128 | 8.7     | LOS A    | 0.6         | 4.6      | 0.29   | 0.51      | 53.6    |
| 12u         | U                 | 9             | 11.1     | 0.128 | 10.7    | LOS B    | 0.6         | 4.6      | 0.29   | 0.51      | 53.8    |
| Approach    |                   | 150           | 1.3      | 0.128 | 5.7     | LOS A    | 0.6         | 4.6      | 0.29   | 0.51      | 53.9    |
| All Vehicle | es                | 507           | 2.0      | 0.128 | 6.0     | LOS A    | 0.7         | 4.7      | 0.26   | 0.54      | 53.5    |
|             |                   |               |          |       |         |          |             |          |        |           |         |

# **Intersection 2 [2028 Design AM] Movement Summary:**

**♥** Site: 102 [2028 Design AM]

| 1 Couridad  | out               |              |       |       |         |          |             |          |        |           |         |
|-------------|-------------------|--------------|-------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performand     | e - Vehicles |       |       |         |          |             |          |        |           |         |
| Mov         | OD                | Demand       | Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov               | Total        | HV    | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                   | veh/h        | %     | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: We   | est Street (Sout  | h)           |       |       |         |          |             |          |        |           |         |
| 1           | L2                | 34           | 2.9   | 0.099 | 6.3     | LOS A    | 0.5         | 3.6      | 0.49   | 0.61      | 52.4    |
| 2           | T1                | 54           | 0.0   | 0.099 | 6.6     | LOS A    | 0.5         | 3.6      | 0.49   | 0.61      | 53.4    |
| 3           | R2                | 8            | 0.0   | 0.099 | 10.0    | LOS A    | 0.5         | 3.6      | 0.49   | 0.61      | 53.1    |
| 3u          | U                 | 1            | 0.0   | 0.099 | 11.7    | LOS B    | 0.5         | 3.6      | 0.49   | 0.61      | 53.7    |
| Approach    |                   | 97           | 1.0   | 0.099 | 6.8     | LOS A    | 0.5         | 3.6      | 0.49   | 0.61      | 53.0    |
| East: Lake  | e Street (East)   |              |       |       |         |          |             |          |        |           |         |
| 4           | L2                | 12           | 0.0   | 0.261 | 5.1     | LOS A    | 1.5         | 10.8     | 0.27   | 0.57      | 52.1    |
| 5           | T1                | 161          | 0.0   | 0.261 | 5.2     | LOS A    | 1.5         | 10.8     | 0.27   | 0.57      | 53.3    |
| 6           | R2                | 167          | 0.6   | 0.261 | 8.5     | LOS A    | 1.5         | 10.8     | 0.27   | 0.57      | 52.8    |
| 6u          | U                 | 2            | 0.0   | 0.261 | 10.3    | LOS B    | 1.5         | 10.8     | 0.27   | 0.57      | 53.5    |
| Approach    |                   | 342          | 0.3   | 0.261 | 6.8     | LOS A    | 1.5         | 10.8     | 0.27   | 0.57      | 53.0    |
| North: We   | est Street (North | 1)           |       |       |         |          |             |          |        |           |         |
| 7           | L2                | 70           | 0.0   | 0.100 | 5.1     | LOS A    | 0.5         | 3.7      | 0.32   | 0.55      | 53.1    |
| 8           | T1                | 25           | 0.0   | 0.100 | 5.4     | LOS A    | 0.5         | 3.7      | 0.32   | 0.55      | 54.0    |
| 9           | R2                | 21           | 0.0   | 0.100 | 8.8     | LOS A    | 0.5         | 3.7      | 0.32   | 0.55      | 53.7    |
| 9u          | U                 | 1            | 0.0   | 0.100 | 10.5    | LOS B    | 0.5         | 3.7      | 0.32   | 0.55      | 54.3    |
| Approach    |                   | 117          | 0.0   | 0.100 | 5.9     | LOS A    | 0.5         | 3.7      | 0.32   | 0.55      | 53.4    |
| West: Lak   | e Street (West)   |              |       |       |         |          |             |          |        |           |         |
| 10          | L2                | 14           | 7.1   | 0.134 | 6.0     | LOS A    | 0.7         | 4.9      | 0.41   | 0.59      | 51.8    |
| 11          | T1                | 93           | 1.1   | 0.134 | 6.0     | LOS A    | 0.7         | 4.9      | 0.41   | 0.59      | 53.2    |
| 12          | R2                | 30           | 0.0   | 0.134 | 9.3     | LOS A    | 0.7         | 4.9      | 0.41   | 0.59      | 52.8    |
| 12u         | U                 | 5            | 0.0   | 0.134 | 11.1    | LOS B    | 0.7         | 4.9      | 0.41   | 0.59      | 53.5    |
| Approach    |                   | 142          | 1.4   | 0.134 | 6.9     | LOS A    | 0.7         | 4.9      | 0.41   | 0.59      | 53.0    |
| All Vehicle | es                | 698          | 0.6   | 0.261 | 6.7     | LOS A    | 1.5         | 10.8     | 0.34   | 0.57      | 53.1    |
|             |                   |              |       |       |         |          |             |          |        |           |         |

# **Intersection 2 [2028 Design PM] Movement Summary:**

**♥** Site: 102 [2028 Design PM]

| Roundab     | out             |                |      |       |         |          |                   |          |        |           |         |
|-------------|-----------------|----------------|------|-------|---------|----------|-------------------|----------|--------|-----------|---------|
| Moveme      | nt Performaı    | nce - Vehicles |      |       |         |          |                   |          |        |           |         |
| Mov         | OD              | Demand Flows   |      | Deg.  | Average | Level of | 95% Back of Queue |          | Prop.  | Effective | Average |
| ID          | Mov             | Total          | HV   | Satn  | Delay   | Service  | Vehicles          | Distance | Queued | Stop Rate | Speed   |
|             |                 | veh/h          | %    | v/c   | sec     |          | veh               | m        |        | per veh   | km/h    |
| South: We   | est Street (So  | uth)           |      |       |         |          |                   |          |        |           |         |
| 1           | L2              | 48             | 2.1  | 0.128 | 6.5     | LOS A    | 0.7               | 5.0      | 0.55   | 0.64      | 52.2    |
| 2           | T1              | 58             | 1.7  | 0.128 | 6.9     | LOS A    | 0.7               | 5.0      | 0.55   | 0.64      | 53.2    |
| 3           | R2              | 12             | 0.0  | 0.128 | 10.3    | LOS B    | 0.7               | 5.0      | 0.55   | 0.64      | 52.9    |
| 3u          | U               | 1              | 0.0  | 0.128 | 12.0    | LOS B    | 0.7               | 5.0      | 0.55   | 0.64      | 53.5    |
| Approach    |                 | 119            | 1.7  | 0.128 | 7.1     | LOS A    | 0.7               | 5.0      | 0.55   | 0.64      | 52.8    |
| East: Lake  | e Street (East) | )              |      |       |         |          |                   |          |        |           |         |
| 4           | L2              | 7              | 14.3 | 0.330 | 6.2     | LOS A    | 2.1               | 15.1     | 0.46   | 0.62      | 51.0    |
| 5           | T1              | 185            | 1.1  | 0.330 | 6.0     | LOS A    | 2.1               | 15.1     | 0.46   | 0.62      | 52.6    |
| 6           | R2              | 176            | 1.1  | 0.330 | 9.3     | LOS A    | 2.1               | 15.1     | 0.46   | 0.62      | 52.2    |
| 6u          | U               | 1              | 0.0  | 0.330 | 11.1    | LOS B    | 2.1               | 15.1     | 0.46   | 0.62      | 52.9    |
| Approach    |                 | 369            | 1.4  | 0.330 | 7.6     | LOS A    | 2.1               | 15.1     | 0.46   | 0.62      | 52.4    |
| North: We   | est Street (Nor | th)            |      |       |         |          |                   |          |        |           |         |
| 7           | L2              | 192            | 0.5  | 0.324 | 6.5     | LOS A    | 2.1               | 14.6     | 0.59   | 0.67      | 52.4    |
| 8           | T1              | 103            | 0.0  | 0.324 | 6.9     | LOS A    | 2.1               | 14.6     | 0.59   | 0.67      | 53.3    |
| 9           | R2              | 17             | 0.0  | 0.324 | 10.3    | LOS B    | 2.1               | 14.6     | 0.59   | 0.67      | 53.1    |
| 9u          | U               | 4              | 0.0  | 0.324 | 12.0    | LOS B    | 2.1               | 14.6     | 0.59   | 0.67      | 53.6    |
| Approach    |                 | 316            | 0.3  | 0.324 | 6.9     | LOS A    | 2.1               | 14.6     | 0.59   | 0.67      | 52.8    |
| West: Lak   | e Street (Wes   | st)            |      |       |         |          |                   |          |        |           |         |
| 10          | L2              | 15             | 0.0  | 0.324 | 6.3     | LOS A    | 2.0               | 14.2     | 0.51   | 0.63      | 51.8    |
| 11          | T1              | 255            | 0.4  | 0.324 | 6.4     | LOS A    | 2.0               | 14.2     | 0.51   | 0.63      | 52.9    |
| 12          | R2              | 59             | 0.0  | 0.324 | 9.7     | LOS A    | 2.0               | 14.2     | 0.51   | 0.63      | 52.5    |
| 12u         | U               | 9              | 11.1 | 0.324 | 11.8    | LOS B    | 2.0               | 14.2     | 0.51   | 0.63      | 52.7    |
| Approach    |                 | 338            | 0.6  | 0.324 | 7.1     | LOS A    | 2.0               | 14.2     | 0.51   | 0.63      | 52.8    |
| All Vehicle | es              | 1142           | 0.9  | 0.330 | 7.2     | LOS A    | 2.1               | 15.1     | 0.52   | 0.64      | 52.7    |

# **Intersection 3 [2028 Base AM] Movement Summary:**

**♥** Site: 103 [2028 Base AM]

West / Wallis Roundabout

| Noundabl    | Jul               |              |      |       |         |          |                   |          |        |           |         |
|-------------|-------------------|--------------|------|-------|---------|----------|-------------------|----------|--------|-----------|---------|
| Movemer     | nt Performanc     | e - Vehicles |      |       |         |          |                   |          |        |           |         |
| Mov         | OD                | Demand Flows |      | Deg.  | Average | Level of | 95% Back of Queue |          | Prop.  | Effective | Average |
| ID          | Mov               | Total        | HV   | Satn  | Delay   | Service  | Vehicles          | Distance | Queued | Stop Rate | Speed   |
|             |                   | veh/h        | %    | v/c   | sec     |          | veh               | m        |        | per veh   | km/h    |
| South: We   | st Street (South  | 1)           |      |       |         |          |                   |          |        |           |         |
| 1           | L2                | 50           | 4.0  | 0.121 | 4.4     | LOS A    | 0.6               | 4.4      | 0.15   | 0.45      | 54.1    |
| 2           | T1                | 117          | 0.0  | 0.121 | 4.7     | LOS A    | 0.6               | 4.4      | 0.15   | 0.45      | 55.4    |
| 3           | R2                | 1            | 0.0  | 0.121 | 8.5     | LOS A    | 0.6               | 4.4      | 0.15   | 0.45      | 55.1    |
| 3u          | U                 | 1            | 0.0  | 0.121 | 10.4    | LOS B    | 0.6               | 4.4      | 0.15   | 0.45      | 55.9    |
| Approach    |                   | 169          | 1.2  | 0.121 | 4.7     | LOS A    | 0.6               | 4.4      | 0.15   | 0.45      | 55.0    |
| East: Wall  | is Street (East)  |              |      |       |         |          |                   |          |        |           |         |
| 4           | L2                | 11           | 0.0  | 0.034 | 4.4     | LOS A    | 0.2               | 1.1      | 0.16   | 0.49      | 53.7    |
| 5           | T1                | 25           | 0.0  | 0.034 | 4.7     | LOS A    | 0.2               | 1.1      | 0.16   | 0.49      | 54.9    |
| 6           | R2                | 7            | 14.3 | 0.034 | 8.8     | LOS A    | 0.2               | 1.1      | 0.16   | 0.49      | 54.0    |
| 6u          | U                 | 1            | 0.0  | 0.034 | 10.4    | LOS B    | 0.2               | 1.1      | 0.16   | 0.49      | 55.4    |
| Approach    |                   | 44           | 2.3  | 0.034 | 5.4     | LOS A    | 0.2               | 1.1      | 0.16   | 0.49      | 54.5    |
| North: We   | st Street (North) |              |      |       |         |          |                   |          |        |           |         |
| 7           | L2                | 1            | 0.0  | 0.020 | 4.3     | LOS A    | 0.1               | 0.7      | 0.11   | 0.48      | 53.8    |
| 8           | T1                | 20           | 0.0  | 0.020 | 4.6     | LOS A    | 0.1               | 0.7      | 0.11   | 0.48      | 54.9    |
| 9           | R2                | 4            | 0.0  | 0.020 | 8.5     | LOS A    | 0.1               | 0.7      | 0.11   | 0.48      | 54.6    |
| 9u          | U                 | 1            | 0.0  | 0.020 | 10.3    | LOS B    | 0.1               | 0.7      | 0.11   | 0.48      | 55.4    |
| Approach    |                   | 26           | 0.0  | 0.020 | 5.4     | LOS A    | 0.1               | 0.7      | 0.11   | 0.48      | 54.8    |
| West: Wal   | lis Street (West) |              |      |       |         |          |                   |          |        |           |         |
| 10          | L2                | 10           | 0.0  | 0.026 | 4.8     | LOS A    | 0.1               | 0.8      | 0.27   | 0.58      | 52.1    |
| 11          | T1                | 1            | 0.0  | 0.026 | 5.1     | LOS A    | 0.1               | 0.8      | 0.27   | 0.58      | 53.2    |
| 12          | R2                | 19           | 0.0  | 0.026 | 8.9     | LOS A    | 0.1               | 0.8      | 0.27   | 0.58      | 53.0    |
| 12u         | U                 | 1            | 0.0  | 0.026 | 10.8    | LOS B    | 0.1               | 0.8      | 0.27   | 0.58      | 53.7    |
| Approach    |                   | 31           | 0.0  | 0.026 | 7.5     | LOS A    | 0.1               | 0.8      | 0.27   | 0.58      | 52.7    |
| All Vehicle | s                 | 270          | 1.1  | 0.121 | 5.2     | LOS A    | 0.6               | 4.4      | 0.16   | 0.47      | 54.6    |
|             |                   |              |      |       |         |          |                   |          |        |           |         |

## **Intersection 3 [2028 Base PM] Movement Summary:**

**♥** Site: 103 [2028 Base PM]

West / Wallis Roundabout

| Roundab     | out                |          |         |       |         |          |             |          |        |           |         |
|-------------|--------------------|----------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performance -   | Vehicles |         |       |         |          |             |          |        |           |         |
| Mov         | OD                 | Demand   | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov                | Total    | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                    | veh/h    | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: We   | est Street (South) |          |         |       |         |          |             |          |        |           |         |
| 1           | L2                 | 37       | 2.7     | 0.087 | 4.4     | LOS A    | 0.4         | 3.1      | 0.14   | 0.45      | 54.1    |
| 2           | T1                 | 80       | 2.5     | 0.087 | 4.7     | LOS A    | 0.4         | 3.1      | 0.14   | 0.45      | 55.3    |
| 3           | R2                 | 2        | 0.0     | 0.087 | 8.5     | LOS A    | 0.4         | 3.1      | 0.14   | 0.45      | 55.1    |
| 3u          | U                  | 1        | 0.0     | 0.087 | 10.4    | LOS B    | 0.4         | 3.1      | 0.14   | 0.45      | 55.9    |
| Approach    |                    | 120      | 2.5     | 0.087 | 4.7     | LOS A    | 0.4         | 3.1      | 0.14   | 0.45      | 54.9    |
| East: Wal   | lis Street (East)  |          |         |       |         |          |             |          |        |           |         |
| 4           | L2                 | 11       | 0.0     | 0.029 | 4.7     | LOS A    | 0.1         | 1.0      | 0.24   | 0.48      | 53.6    |
| 5           | T1                 | 22       | 0.0     | 0.029 | 4.9     | LOS A    | 0.1         | 1.0      | 0.24   | 0.48      | 54.8    |
| 6           | R2                 | 2        | 0.0     | 0.029 | 8.8     | LOS A    | 0.1         | 1.0      | 0.24   | 0.48      | 54.5    |
| 6u          | U                  | 1        | 0.0     | 0.029 | 10.7    | LOS B    | 0.1         | 1.0      | 0.24   | 0.48      | 55.3    |
| Approach    |                    | 36       | 0.0     | 0.029 | 5.2     | LOS A    | 0.1         | 1.0      | 0.24   | 0.48      | 54.4    |
| North: We   | est Street (North) |          |         |       |         |          |             |          |        |           |         |
| 7           | L2                 | 4        | 0.0     | 0.036 | 4.5     | LOS A    | 0.2         | 1.2      | 0.21   | 0.47      | 53.6    |
| 8           | T1                 | 36       | 2.8     | 0.036 | 4.9     | LOS A    | 0.2         | 1.2      | 0.21   | 0.47      | 54.7    |
| 9           | R2                 | 4        | 0.0     | 0.036 | 8.7     | LOS A    | 0.2         | 1.2      | 0.21   | 0.47      | 54.5    |
| 9u          | U                  | 1        | 0.0     | 0.036 | 10.6    | LOS B    | 0.2         | 1.2      | 0.21   | 0.47      | 55.3    |
| Approach    |                    | 45       | 2.2     | 0.036 | 5.3     | LOS A    | 0.2         | 1.2      | 0.21   | 0.47      | 54.6    |
| West: Wa    | llis Street (West) |          |         |       |         |          |             |          |        |           |         |
| 10          | L2                 | 27       | 0.0     | 0.076 | 4.6     | LOS A    | 0.4         | 2.6      | 0.23   | 0.58      | 52.3    |
| 11          | T1                 | 9        | 0.0     | 0.076 | 4.9     | LOS A    | 0.4         | 2.6      | 0.23   | 0.58      | 53.4    |
| 12          | R2                 | 55       | 0.0     | 0.076 | 8.8     | LOS A    | 0.4         | 2.6      | 0.23   | 0.58      | 53.1    |
| 12u         | U                  | 4        | 0.0     | 0.076 | 10.7    | LOS B    | 0.4         | 2.6      | 0.23   | 0.58      | 53.9    |
| Approach    |                    | 95       | 0.0     | 0.076 | 7.3     | LOS A    | 0.4         | 2.6      | 0.23   | 0.58      | 52.9    |
| All Vehicle | es                 | 296      | 1.4     | 0.087 | 5.7     | LOS A    | 0.4         | 3.1      | 0.19   | 0.50      | 54.2    |
|             |                    |          |         |       |         |          |             |          |        |           |         |

# **Intersection 3 [2028 Design AM] Movement Summary:**

**♥** Site: 103 [2028 Design AM]

West / Wallis Roundabout

| Nouridab    | out             |                |         |       |         |          |             |          |        |           |         |
|-------------|-----------------|----------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performar    | nce - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov         | OD              | Deman          | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov             | Total          | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                 | veh/h          | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: We   | est Street (Sou | uth)           |         |       |         |          |             |          |        |           |         |
| 1           | L2              | 50             | 4.0     | 0.157 | 4.4     | LOS A    | 0.8         | 6.0      | 0.16   | 0.45      | 54.0    |
| 2           | T1              | 171            | 0.0     | 0.157 | 4.7     | LOS A    | 0.8         | 6.0      | 0.16   | 0.45      | 55.3    |
| 3           | R2              | 1              | 0.0     | 0.157 | 8.5     | LOS A    | 0.8         | 6.0      | 0.16   | 0.45      | 55.1    |
| 3u          | U               | 1              | 0.0     | 0.157 | 10.4    | LOS B    | 0.8         | 6.0      | 0.16   | 0.45      | 55.9    |
| Approach    |                 | 223            | 0.9     | 0.157 | 4.7     | LOS A    | 0.8         | 6.0      | 0.16   | 0.45      | 55.0    |
| East: Wal   | lis Street (Eas | t)             |         |       |         |          |             |          |        |           |         |
| 4           | L2              | 11             | 0.0     | 0.036 | 4.6     | LOS A    | 0.2         | 1.2      | 0.23   | 0.49      | 53.5    |
| 5           | T1              | 25             | 0.0     | 0.036 | 4.9     | LOS A    | 0.2         | 1.2      | 0.23   | 0.49      | 54.6    |
| 6           | R2              | 7              | 14.3    | 0.036 | 9.0     | LOS A    | 0.2         | 1.2      | 0.23   | 0.49      | 53.8    |
| 6u          | U               | 1              | 0.0     | 0.036 | 10.6    | LOS B    | 0.2         | 1.2      | 0.23   | 0.49      | 55.2    |
| Approach    |                 | 44             | 2.3     | 0.036 | 5.6     | LOS A    | 0.2         | 1.2      | 0.23   | 0.49      | 54.2    |
| North: We   | est Street (Nor | th)            |         |       |         |          |             |          |        |           |         |
| 7           | L2              | 1              | 0.0     | 0.051 | 4.3     | LOS A    | 0.3         | 1.8      | 0.11   | 0.45      | 54.1    |
| 8           | T1              | 65             | 0.0     | 0.051 | 4.6     | LOS A    | 0.3         | 1.8      | 0.11   | 0.45      | 55.3    |
| 9           | R2              | 4              | 0.0     | 0.051 | 8.5     | LOS A    | 0.3         | 1.8      | 0.11   | 0.45      | 55.0    |
| 9u          | U               | 1              | 0.0     | 0.051 | 10.3    | LOS B    | 0.3         | 1.8      | 0.11   | 0.45      | 55.8    |
| Approach    |                 | 71             | 0.0     | 0.051 | 4.9     | LOS A    | 0.3         | 1.8      | 0.11   | 0.45      | 55.2    |
| West: Wa    | llis Street (We | est)           |         |       |         |          |             |          |        |           |         |
| 10          | L2              | 10             | 0.0     | 0.027 | 5.0     | LOS A    | 0.1         | 0.9      | 0.33   | 0.59      | 52.0    |
| 11          | T1              | 1              | 0.0     | 0.027 | 5.3     | LOS A    | 0.1         | 0.9      | 0.33   | 0.59      | 53.0    |
| 12          | R2              | 19             | 0.0     | 0.027 | 9.2     | LOS A    | 0.1         | 0.9      | 0.33   | 0.59      | 52.8    |
| 12u         | U               | 1              | 0.0     | 0.027 | 11.1    | LOS B    | 0.1         | 0.9      | 0.33   | 0.59      | 53.5    |
| Approach    |                 | 31             | 0.0     | 0.027 | 7.8     | LOS A    | 0.1         | 0.9      | 0.33   | 0.59      | 52.6    |
| All Vehicle | es              | 369            | 0.8     | 0.157 | 5.1     | LOS A    | 0.8         | 6.0      | 0.17   | 0.46      | 54.8    |
|             |                 |                |         |       |         |          |             |          |        |           |         |

## **Intersection 3 [2028 Design PM] Movement Summary:**

**♥** Site: 103 [2028 Design PM]

West / Wallis Roundabout

| Nouridad    | ·out               |              |       |       |         |          |             |          |        |           |         |
|-------------|--------------------|--------------|-------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performanc      | e - Vehicles |       |       |         |          |             |          |        |           |         |
| Mov         | OD                 | Demand       | Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov                | Total        | HV    | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                    | veh/h        | %     | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: W    | est Street (South  | 1)           |       |       |         |          |             |          |        |           |         |
| 1           | L2                 | 37           | 2.7   | 0.170 | 4.4     | LOS A    | 1.0         | 6.9      | 0.15   | 0.44      | 54.1    |
| 2           | T1                 | 206          | 1.0   | 0.170 | 4.7     | LOS A    | 1.0         | 6.9      | 0.15   | 0.44      | 55.3    |
| 3           | R2                 | 2            | 0.0   | 0.170 | 8.5     | LOS A    | 1.0         | 6.9      | 0.15   | 0.44      | 55.1    |
| 3u          | U                  | 1            | 0.0   | 0.170 | 10.4    | LOS B    | 1.0         | 6.9      | 0.15   | 0.44      | 55.9    |
| Approach    |                    | 246          | 1.2   | 0.170 | 4.7     | LOS A    | 1.0         | 6.9      | 0.15   | 0.44      | 55.1    |
| East: Wal   | llis Street (East) |              |       |       |         |          |             |          |        |           |         |
| 4           | L2                 | 11           | 0.0   | 0.034 | 5.6     | LOS A    | 0.2         | 1.2      | 0.42   | 0.54      | 53.0    |
| 5           | T1                 | 22           | 0.0   | 0.034 | 5.8     | LOS A    | 0.2         | 1.2      | 0.42   | 0.54      | 54.1    |
| 6           | R2                 | 2            | 0.0   | 0.034 | 9.7     | LOS A    | 0.2         | 1.2      | 0.42   | 0.54      | 53.8    |
| 6u          | U                  | 1            | 0.0   | 0.034 | 11.6    | LOS B    | 0.2         | 1.2      | 0.42   | 0.54      | 54.6    |
| Approach    |                    | 36           | 0.0   | 0.034 | 6.1     | LOS A    | 0.2         | 1.2      | 0.42   | 0.54      | 53.7    |
| North: We   | est Street (North) | )            |       |       |         |          |             |          |        |           |         |
| 7           | L2                 | 4            | 0.0   | 0.175 | 4.6     | LOS A    | 1.0         | 7.0      | 0.24   | 0.45      | 53.7    |
| 8           | T1                 | 224          | 0.4   | 0.175 | 4.9     | LOS A    | 1.0         | 7.0      | 0.24   | 0.45      | 54.9    |
| 9           | R2                 | 4            | 0.0   | 0.175 | 8.7     | LOS A    | 1.0         | 7.0      | 0.24   | 0.45      | 54.6    |
| 9u          | U                  | 1            | 0.0   | 0.175 | 10.6    | LOS B    | 1.0         | 7.0      | 0.24   | 0.45      | 55.4    |
| Approach    |                    | 233          | 0.4   | 0.175 | 4.9     | LOS A    | 1.0         | 7.0      | 0.24   | 0.45      | 54.8    |
| West: Wa    | allis Street (West | )            |       |       |         |          |             |          |        |           |         |
| 10          | L2                 | 27           | 0.0   | 0.085 | 5.3     | LOS A    | 0.4         | 2.9      | 0.37   | 0.61      | 51.9    |
| 11          | T1                 | 9            | 0.0   | 0.085 | 5.5     | LOS A    | 0.4         | 2.9      | 0.37   | 0.61      | 52.9    |
| 12          | R2                 | 55           | 0.0   | 0.085 | 9.4     | LOS A    | 0.4         | 2.9      | 0.37   | 0.61      | 52.7    |
| 12u         | U                  | 4            | 0.0   | 0.085 | 11.3    | LOS B    | 0.4         | 2.9      | 0.37   | 0.61      | 53.4    |
| Approach    |                    | 95           | 0.0   | 0.085 | 7.9     | LOS A    | 0.4         | 2.9      | 0.37   | 0.61      | 52.5    |
| All Vehicle | es                 | 610          | 0.7   | 0.175 | 5.4     | LOS A    | 1.0         | 7.0      | 0.23   | 0.48      | 54.5    |

## **Intersection 4 [2028 Base AM] Movement Summary:**

**∇**Site: 104 [2028 Base AM]

Head / West

| Giveway /    | Tiela (Two-wa     | ay <i>)</i>  |         |       |         |          |               |          |        |           |         |
|--------------|-------------------|--------------|---------|-------|---------|----------|---------------|----------|--------|-----------|---------|
| Movemen      | t Performance     | e - Vehicles |         |       |         |          |               |          |        |           |         |
| Mov          | OD                | Demand       | d Flows | Deg.  | Average | Level of | 95% Back of 0 | Queue    | Prop.  | Effective | Average |
| ID           | Mov               | Total        | HV      | Satn  | Delay   | Service  | Vehicles      | Distance | Queued | Stop Rate | Speed   |
|              |                   | veh/h        | %       | v/c   | sec     |          | veh           | m        |        | per veh   | km/h    |
| South: Wes   | st Street (South  | )            |         |       |         |          |               |          |        |           |         |
| 1            | L2                | 141          | 0.7     | 0.181 | 8.4     | LOS A    | 0.7           | 4.7      | 0.51   | 0.76      | 51.5    |
| Approach     |                   | 141          | 0.7     | 0.181 | 8.4     | LOS A    | 0.7           | 4.7      | 0.51   | 0.76      | 51.5    |
| East: Head   | Street (East)     |              |         |       |         |          |               |          |        |           |         |
| 4            | L2                | 1            | 0.0     | 0.255 | 5.6     | LOS A    | 0.0           | 0.0      | 0.00   | 0.00      | 58.3    |
| 5            | T1                | 977          | 2.7     | 0.255 | 0.0     | LOS A    | 0.0           | 0.0      | 0.00   | 0.00      | 59.9    |
| 6            | R2                | 47           | 0.0     | 0.123 | 13.8    | LOS B    | 0.4           | 3.0      | 0.75   | 0.90      | 47.5    |
| 6u           | U                 | 1            | 0.0     | 0.123 | 25.5    | LOS D    | 0.4           | 3.0      | 0.75   | 0.90      | 47.3    |
| Approach     |                   | 1026         | 2.5     | 0.255 | 0.7     | NA       | 0.4           | 3.0      | 0.04   | 0.04      | 59.2    |
| North: Wes   | st Street (North) |              |         |       |         |          |               |          |        |           |         |
| 7            | L2                | 88           | 0.0     | 0.116 | 8.4     | LOS A    | 0.4           | 2.9      | 0.50   | 0.74      | 51.5    |
| Approach     |                   | 88           | 0.0     | 0.116 | 8.4     | LOS A    | 0.4           | 2.9      | 0.50   | 0.74      | 51.5    |
| West: Head   | d Street (West)   |              |         |       |         |          |               |          |        |           |         |
| 10           | L2                | 14           | 0.0     | 0.276 | 5.6     | LOS A    | 0.0           | 0.0      | 0.00   | 0.02      | 58.2    |
| 11           | T1                | 1030         | 4.7     | 0.276 | 0.0     | LOS A    | 0.0           | 0.0      | 0.00   | 0.01      | 59.9    |
| 12           | R2                | 19           | 0.0     | 0.047 | 12.3    | LOS B    | 0.2           | 1.1      | 0.71   | 0.87      | 48.2    |
| 12u          | U                 | 1            | 0.0     | 0.047 | 22.1    | LOS C    | 0.2           | 1.1      | 0.71   | 0.87      | 48.1    |
| Approach     |                   | 1064         | 4.5     | 0.276 | 0.3     | NA       | 0.2           | 1.1      | 0.01   | 0.02      | 59.6    |
| All Vehicles | \$                | 2319         | 3.2     | 0.276 | 1.3     | NA       | 0.7           | 4.7      | 0.07   | 0.10      | 58.5    |

## **Intersection 4 [2028 Base PM] Movement Summary:**

∇<sub>Site: 104</sub> [2028 Base PM]

Head / West

| Civeway /    | rieiu (i wo-wa    | <i>y)</i>    |         |       |         |          |             |          |        |           |         |
|--------------|-------------------|--------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Movemen      | t Performance     | e - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov          | OD                | Demand       | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID           | Mov               | Total        | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|              |                   | veh/h        | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Wes   | st Street (South) |              |         |       |         |          |             |          |        |           |         |
| 1            | L2                | 123          | 1.6     | 0.154 | 8.2     | LOS A    | 0.6         | 4.0      | 0.49   | 0.74      | 51.6    |
| Approach     |                   | 123          | 1.6     | 0.154 | 8.2     | LOS A    | 0.6         | 4.0      | 0.49   | 0.74      | 51.6    |
| East: Head   | Street (East)     |              |         |       |         |          |             |          |        |           |         |
| 4            | L2                | 6            | 0.0     | 0.246 | 5.6     | LOS A    | 0.0         | 0.0      | 0.00   | 0.01      | 58.2    |
| 5            | T1                | 930          | 3.9     | 0.246 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.00      | 59.9    |
| 6            | R2                | 55           | 0.0     | 0.133 | 13.1    | LOS B    | 0.5         | 3.3      | 0.73   | 0.89      | 47.9    |
| 6u           | U                 | 1            | 0.0     | 0.133 | 23.7    | LOS C    | 0.5         | 3.3      | 0.73   | 0.89      | 47.7    |
| Approach     |                   | 992          | 3.6     | 0.246 | 8.0     | NA       | 0.5         | 3.3      | 0.04   | 0.05      | 59.1    |
| North: Wes   | st Street (North) |              |         |       |         |          |             |          |        |           |         |
| 7            | L2                | 123          | 0.0     | 0.158 | 8.3     | LOS A    | 0.6         | 4.0      | 0.50   | 0.75      | 51.5    |
| Approach     |                   | 123          | 0.0     | 0.158 | 8.3     | LOS A    | 0.6         | 4.0      | 0.50   | 0.75      | 51.5    |
| West: Head   | d Street (West)   |              |         |       |         |          |             |          |        |           |         |
| 10           | L2                | 11           | 0.0     | 0.263 | 5.6     | LOS A    | 0.0         | 0.0      | 0.00   | 0.01      | 58.2    |
| 11           | T1                | 992          | 3.4     | 0.263 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.01      | 59.9    |
| 12           | R2                | 30           | 3.3     | 0.070 | 12.3    | LOS B    | 0.2         | 1.7      | 0.70   | 0.88      | 48.3    |
| 12u          | U                 | 1            | 0.0     | 0.070 | 20.9    | LOS C    | 0.2         | 1.7      | 0.70   | 0.88      | 48.2    |
| Approach     |                   | 1034         | 3.4     | 0.263 | 0.5     | NA       | 0.2         | 1.7      | 0.02   | 0.03      | 59.4    |
| All Vehicles | \$                | 2272         | 3.2     | 0.263 | 1.5     | NA       | 0.6         | 4.0      | 0.08   | 0.12      | 58.3    |

## **Intersection 4 [2028 Design AM] Movement Summary:**

∇<sub>Site: 104</sub> [2028 Design AM]

Head / West

| Civeway /    | rieid (Two-w     | ay)          |         |       |         |          |             |          |        |           |         |
|--------------|------------------|--------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Movemen      | nt Performanc    | e - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov          | OD               | Demand       | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID           | Mov              | Total        | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|              |                  | veh/h        | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Wes   | st Street (South | h)           |         |       |         |          |             |          |        |           |         |
| 1            | L2               | 195          | 0.5     | 0.250 | 8.5     | LOS A    | 1.0         | 6.8      | 0.53   | 0.78      | 51.3    |
| Approach     |                  | 195          | 0.5     | 0.250 | 8.5     | LOS A    | 1.0         | 6.8      | 0.53   | 0.78      | 51.3    |
| East: Head   | d Street (East)  |              |         |       |         |          |             |          |        |           |         |
| 4            | L2               | 1            | 0.0     | 0.255 | 5.6     | LOS A    | 0.0         | 0.0      | 0.00   | 0.00      | 58.3    |
| 5            | T1               | 977          | 2.7     | 0.255 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.00      | 59.9    |
| 6            | R2               | 47           | 0.0     | 0.123 | 13.8    | LOS B    | 0.4         | 3.0      | 0.75   | 0.90      | 47.5    |
| 6u           | U                | 1            | 0.0     | 0.123 | 25.5    | LOS D    | 0.4         | 3.0      | 0.75   | 0.90      | 47.3    |
| Approach     |                  | 1026         | 2.5     | 0.255 | 0.7     | NA       | 0.4         | 3.0      | 0.04   | 0.04      | 59.2    |
| North: Wes   | st Street (North | )            |         |       |         |          |             |          |        |           |         |
| 7            | L2               | 88           | 0.0     | 0.116 | 8.4     | LOS A    | 0.4         | 2.9      | 0.50   | 0.74      | 51.5    |
| Approach     |                  | 88           | 0.0     | 0.116 | 8.4     | LOS A    | 0.4         | 2.9      | 0.50   | 0.74      | 51.5    |
| West: Hea    | d Street (West)  | )            |         |       |         |          |             |          |        |           |         |
| 10           | L2               | 14           | 0.0     | 0.276 | 5.6     | LOS A    | 0.0         | 0.0      | 0.00   | 0.02      | 58.2    |
| 11           | T1               | 1030         | 4.7     | 0.276 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.01      | 59.9    |
| 12           | R2               | 64           | 0.0     | 0.147 | 12.8    | LOS B    | 0.5         | 3.7      | 0.72   | 0.89      | 48.2    |
| 12u          | U                | 1            | 0.0     | 0.147 | 23.0    | LOS C    | 0.5         | 3.7      | 0.72   | 0.89      | 48.0    |
| Approach     |                  | 1109         | 4.3     | 0.276 | 0.9     | NA       | 0.5         | 3.7      | 0.04   | 0.06      | 59.0    |
| All Vehicles | S                | 2418         | 3.1     | 0.276 | 1.7     | NA       | 1.0         | 6.8      | 0.10   | 0.14      | 58.1    |

## **Intersection 4 [2028 Design PM] Movement Summary:**

**∇**Site: 104 [2028 Design PM]

Head / West

| Giveway /    | Tield (Two-w      | ay <i>)</i>  |         |       |         |          |          |          |        |           |         |
|--------------|-------------------|--------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Movemen      | t Performanc      | e - Vehicles |         |       |         |          |          |          |        |           |         |
| Mov          | OD                | Demand       | d Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID           | Mov               | Total        | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|              |                   | veh/h        | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Wes   | st Street (South  | 1)           |         |       |         |          |          |          |        |           |         |
| 1            | L2                | 249          | 0.8     | 0.310 | 8.7     | LOS A    | 1.4      | 9.7      | 0.54   | 0.81      | 51.2    |
| Approach     |                   | 249          | 0.8     | 0.310 | 8.7     | LOS A    | 1.4      | 9.7      | 0.54   | 0.81      | 51.2    |
| East: Head   | d Street (East)   |              |         |       |         |          |          |          |        |           |         |
| 4            | L2                | 6            | 0.0     | 0.246 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 58.2    |
| 5            | T1                | 930          | 3.9     | 0.246 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| 6            | R2                | 55           | 0.0     | 0.133 | 13.1    | LOS B    | 0.5      | 3.3      | 0.73   | 0.89      | 47.9    |
| 6u           | U                 | 1            | 0.0     | 0.133 | 23.7    | LOS C    | 0.5      | 3.3      | 0.73   | 0.89      | 47.7    |
| Approach     |                   | 992          | 3.6     | 0.246 | 0.8     | NA       | 0.5      | 3.3      | 0.04   | 0.05      | 59.1    |
| North: Wes   | st Street (North) | )            |         |       |         |          |          |          |        |           |         |
| 7            | L2                | 123          | 0.0     | 0.158 | 8.3     | LOS A    | 0.6      | 4.0      | 0.50   | 0.75      | 51.5    |
| Approach     |                   | 123          | 0.0     | 0.158 | 8.3     | LOS A    | 0.6      | 4.0      | 0.50   | 0.75      | 51.5    |
| West: Head   | d Street (West)   |              |         |       |         |          |          |          |        |           |         |
| 10           | L2                | 11           | 0.0     | 0.263 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 58.2    |
| 11           | T1                | 992          | 3.4     | 0.263 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 59.9    |
| 12           | R2                | 218          | 0.5     | 0.465 | 15.6    | LOS C    | 2.3      | 16.4     | 0.79   | 1.02      | 46.5    |
| 12u          | U                 | 1            | 0.0     | 0.465 | 26.2    | LOS D    | 2.3      | 16.4     | 0.79   | 1.02      | 46.3    |
| Approach     |                   | 1222         | 2.9     | 0.465 | 2.9     | NA       | 2.3      | 16.4     | 0.14   | 0.19      | 56.9    |
| All Vehicles | S                 | 2586         | 2.8     | 0.465 | 2.9     | NA       | 2.3      | 16.4     | 0.16   | 0.22      | 56.8    |

## **Intersection 5 [2028 Base AM] Movement Summary:**

**♥** Site: 105 [2028 Base AM]

| erformance - \        | Vehicles                                                                         |                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OD                    | Deman                                                                            | d Flows                                                                                                                                            | Deg.                                                                                                                                                                                                                                                                       | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level of                                                                                                                                                           | 95% Back of | Queue        | Prop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>l</i> lov          | Total                                                                            | HV                                                                                                                                                 | Satn                                                                                                                                                                                                                                                                       | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Service                                                                                                                                                            | Vehicles    | Distance     | Queued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stop Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | veh/h                                                                            | %                                                                                                                                                  | v/c                                                                                                                                                                                                                                                                        | sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | veh         | m            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | per veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Street (South)        |                                                                                  |                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2                    | 377                                                                              | 1.9                                                                                                                                                | 0.340                                                                                                                                                                                                                                                                      | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 1.7         | 12.1         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T1                    |                                                                                  | 0.0                                                                                                                                                | 0.340                                                                                                                                                                                                                                                                      | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 1.6         | 11.4         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R2                    | 32                                                                               | 0.0                                                                                                                                                | 0.340                                                                                                                                                                                                                                                                      | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 1.6         | 11.4         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U                     | 4                                                                                | 0.0                                                                                                                                                | 0.340                                                                                                                                                                                                                                                                      | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 1.6         | 11.4         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 435                                                                              | 1.6                                                                                                                                                | 0.340                                                                                                                                                                                                                                                                      | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 1.7         | 12.1         | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| eet (East)            |                                                                                  |                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2                    | 11                                                                               | 0.0                                                                                                                                                | 0.496                                                                                                                                                                                                                                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.8         | 26.9         | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T1                    | 1079                                                                             | 2.5                                                                                                                                                | 0.496                                                                                                                                                                                                                                                                      | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.8         | 26.9         | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R2                    | 30                                                                               | 3.3                                                                                                                                                | 0.496                                                                                                                                                                                                                                                                      | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 3.6         | 25.7         | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U                     | 4                                                                                | 0.0                                                                                                                                                | 0.496                                                                                                                                                                                                                                                                      | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 3.6         | 25.7         | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 1124                                                                             | 2.5                                                                                                                                                | 0.496                                                                                                                                                                                                                                                                      | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.8         | 26.9         | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Street (North)        |                                                                                  |                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2                    | 12                                                                               | 8.3                                                                                                                                                | 0.166                                                                                                                                                                                                                                                                      | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | 0.7         | 4.7          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T1                    | 30                                                                               | 0.0                                                                                                                                                | 0.166                                                                                                                                                                                                                                                                      | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 0.7         | 4.7          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R2                    | 51                                                                               | 2.0                                                                                                                                                | 0.166                                                                                                                                                                                                                                                                      | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 0.7         | 4.7          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U                     | 1                                                                                | 0.0                                                                                                                                                | 0.166                                                                                                                                                                                                                                                                      | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 0.7         | 4.7          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 94                                                                               | 2.1                                                                                                                                                | 0.166                                                                                                                                                                                                                                                                      | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 0.7         | 4.7          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| reet (West)           |                                                                                  |                                                                                                                                                    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                    |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| L2                    | 41                                                                               | 4.9                                                                                                                                                | 0.462                                                                                                                                                                                                                                                                      | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.8         | 27.7         | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T1                    | 1011                                                                             | 4.7                                                                                                                                                | 0.462                                                                                                                                                                                                                                                                      | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | 3.8         | 27.7         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R2                    | 266                                                                              | 2.3                                                                                                                                                | 0.462                                                                                                                                                                                                                                                                      | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.7         | 27.0         | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U                     | 19                                                                               | 0.0                                                                                                                                                | 0.462                                                                                                                                                                                                                                                                      | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOS B                                                                                                                                                              | 3.7         | 27.0         | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 1337                                                                             | 4.2                                                                                                                                                | 0.462                                                                                                                                                                                                                                                                      | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.8         | 27.7         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 2990                                                                             | 3.1                                                                                                                                                | 0.496                                                                                                                                                                                                                                                                      | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS A                                                                                                                                                              | 3.8         | 27.7         | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 19<br>1337                                                                       | 0.0                                                                                                                                                | 0.462<br>0.462                                                                                                                                                                                                                                                             | 11.3<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOS B<br>LOS A                                                                                                                                                     | 3.7<br>3.8  | 27.0<br>27.7 | 0.37<br>0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.54<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ON SILTRU ELTRU TELTR | treet (South) 2 1 2 J et (East) 2 1 2 J reet (North) 2 1 2 J et (West) 2 1 2 2 J | reet (South) 2 377 1 22 2 32 J 4 435 et (East) 2 11 1 1079 2 30 J 4 1124 reet (North) 2 12 1 30 2 51 J 1 94 eet (West) 2 41 1 1011 2 266 J 19 1337 | D Demand Flows Total HV veh/h %  treet (South)  2 377 1.9 1 22 0.0 2 32 0.0 J 4 0.0 435 1.6  et (East) 2 11 0.0 11079 2.5 2 30 3.3 J 4 0.0 1124 2.5  reet (North) 2 12 8.3 1 30 0.0 12 51 2.0 J 1 0.0 94 2.1  eet (West) 2 41 4.9 11 1011 4.7 22 266 2.3 J 19 0.0 1337 4.2 | D Demand Flows Total HV veh/h % v/c  treet (South)  2 377 1.9 0.340 1 22 0.0 0.340 2 32 0.0 0.340 2 32 0.0 0.340 3 4 0.0 0.340 4 35 1.6 0.340  et (East)  2 11 0.0 0.496 1 1079 2.5 0.496 2 30 3.3 0.496 3 4 0.0 0.496 1 124 2.5 0.496  reet (North)  2 12 8.3 0.166 1 30 0.0 0.166 2 51 2.0 0.166 3 1 0.0 0.166 9 4 2.1 0.166  eet (West)  2 41 4.9 0.462 41 1011 4.7 0.462 42 266 2.3 0.462 41 19 0.0 0.462 41 19 0.0 0.462 41 19 0.0 0.462 41 19 0.0 0.462 41 19 0.0 0.462 41 19 0.0 0.462 | D Demand Flows Total HV Satn Delay veh/h % v/c sec treet (South)  2 377 1.9 0.340 8.0 11 22 0.0 0.340 12.8 12 32 0.0 0.340 14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8 | D           | D            | Demand Flows   Deg.   Average   Level of vehicles   Distance   D | Depart   D | Demand Flows   Deg.   Average   Delay   Service   Vehicles   Distance   Queued   Stop Rate   Vehicles   Distance   Di |

## **Intersection 5 [2028 Base PM] Movement Summary:**

**♥** Site: 105 [2028 Base PM]

| Roundabo     | out                |          |         |       |         |          |             |          |        |           |         |
|--------------|--------------------|----------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Movemen      | nt Performance -   | Vehicles |         |       |         |          |             |          |        |           |         |
| Mov          | OD                 | Demand   | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID           | Mov                | Total    | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|              |                    | veh/h    | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Bea   | ach Street (South) |          |         |       |         |          |             |          |        |           |         |
| 1            | L2                 | 438      | 1.6     | 0.386 | 8.1     | LOS A    | 2.0         | 14.2     | 0.74   | 0.90      | 51.8    |
| 2            | T1                 | 39       | 0.0     | 0.386 | 8.5     | LOS A    | 1.9         | 13.5     | 0.74   | 0.90      | 52.4    |
| 3            | R2                 | 27       | 0.0     | 0.386 | 12.9    | LOS B    | 1.9         | 13.5     | 0.74   | 0.90      | 52.3    |
| 3u           | U                  | 14       | 0.0     | 0.386 | 14.9    | LOS B    | 1.9         | 13.5     | 0.74   | 0.90      | 53.2    |
| Approach     |                    | 518      | 1.4     | 0.386 | 8.5     | LOS A    | 2.0         | 14.2     | 0.74   | 0.90      | 51.9    |
| East: Head   | d Street (East)    |          |         |       |         |          |             |          |        |           |         |
| 4            | L2                 | 25       | 0.0     | 0.472 | 6.5     | LOS A    | 3.5         | 25.3     | 0.65   | 0.65      | 52.2    |
| 5            | T1                 | 996      | 3.9     | 0.472 | 6.8     | LOS A    | 3.5         | 25.3     | 0.66   | 0.67      | 53.3    |
| 6            | R2                 | 15       | 0.0     | 0.472 | 11.3    | LOS B    | 3.3         | 24.1     | 0.67   | 0.70      | 53.2    |
| 6u           | U                  | 6        | 0.0     | 0.472 | 13.3    | LOS B    | 3.3         | 24.1     | 0.67   | 0.70      | 54.1    |
| Approach     |                    | 1042     | 3.7     | 0.472 | 6.8     | LOS A    | 3.5         | 25.3     | 0.66   | 0.67      | 53.3    |
| North: Bea   | ch Street (North)  |          |         |       |         |          |             |          |        |           |         |
| 7            | L2                 | 30       | 0.0     | 0.202 | 8.3     | LOS A    | 0.8         | 5.8      | 0.68   | 0.87      | 50.4    |
| 8            | T1                 | 26       | 0.0     | 0.202 | 8.5     | LOS A    | 0.8         | 5.8      | 0.68   | 0.87      | 51.5    |
| 9            | R2                 | 60       | 0.0     | 0.202 | 12.9    | LOS B    | 0.8         | 5.8      | 0.68   | 0.87      | 51.4    |
| 9u           | U                  | 1        | 0.0     | 0.202 | 14.9    | LOS B    | 0.8         | 5.8      | 0.68   | 0.87      | 52.3    |
| Approach     |                    | 117      | 0.0     | 0.202 | 10.8    | LOS B    | 0.8         | 5.8      | 0.68   | 0.87      | 51.2    |
| West: Hea    | d Street (West)    |          |         |       |         |          |             |          |        |           |         |
| 10           | L2                 | 57       | 0.0     | 0.459 | 4.8     | LOS A    | 3.9         | 27.8     | 0.38   | 0.45      | 53.4    |
| 11           | T1                 | 970      | 3.6     | 0.459 | 4.9     | LOS A    | 3.9         | 27.8     | 0.38   | 0.49      | 54.3    |
| 12           | R2                 | 269      | 0.7     | 0.459 | 9.3     | LOS A    | 3.8         | 27.0     | 0.40   | 0.55      | 53.3    |
| 12u          | U                  | 22       | 0.0     | 0.459 | 11.3    | LOS B    | 3.8         | 27.0     | 0.40   | 0.55      | 54.2    |
| Approach     |                    | 1318     | 2.8     | 0.459 | 5.9     | LOS A    | 3.9         | 27.8     | 0.39   | 0.50      | 54.0    |
| All Vehicles | S                  | 2995     | 2.8     | 0.472 | 6.9     | LOS A    | 3.9         | 27.8     | 0.56   | 0.64      | 53.3    |
|              |                    |          |         |       |         |          |             |          |        |           |         |

## **Intersection 5 [2028 Design AM] Movement Summary:**

**♥** Site: 105 [2028 Design AM]

| Roundab     | out              |              |         |       |         |          |             |          |        |           |         |
|-------------|------------------|--------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performand    | e - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov         | OD               | Demand       | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov              | Total        | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                  | veh/h        | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Be   | ach Street (Sou  | ıth)         |         |       |         |          |             |          |        |           |         |
| 1           | L2               | 431          | 1.6     | 0.406 | 8.7     | LOS A    | 2.2         | 15.6     | 0.78   | 0.92      | 51.4    |
| 2           | T1               | 22           | 0.0     | 0.406 | 9.2     | LOS A    | 2.1         | 14.6     | 0.78   | 0.93      | 51.9    |
| 3           | R2               | 32           | 0.0     | 0.406 | 13.6    | LOS B    | 2.1         | 14.6     | 0.78   | 0.93      | 51.8    |
| 3u          | U                | 4            | 0.0     | 0.406 | 15.6    | LOS B    | 2.1         | 14.6     | 0.78   | 0.93      | 52.7    |
| Approach    |                  | 489          | 1.4     | 0.406 | 9.1     | LOS A    | 2.2         | 15.6     | 0.78   | 0.92      | 51.4    |
| East: Hea   | d Street (East)  |              |         |       |         |          |             |          |        |           |         |
| 4           | L2               | 11           | 0.0     | 0.542 | 7.0     | LOS A    | 4.5         | 32.2     | 0.71   | 0.70      | 52.0    |
| 5           | T1               | 1133         | 3.4     | 0.542 | 7.4     | LOS A    | 4.5         | 32.2     | 0.72   | 0.73      | 53.1    |
| 6           | R2               | 30           | 0.0     | 0.542 | 12.2    | LOS B    | 4.5         | 32.0     | 0.73   | 0.76      | 52.9    |
| 6u          | U                | 4            | 0.0     | 0.542 | 14.2    | LOS B    | 4.5         | 32.0     | 0.73   | 0.76      | 53.8    |
| Approach    |                  | 1178         | 3.3     | 0.542 | 7.6     | LOS A    | 4.5         | 32.2     | 0.72   | 0.73      | 53.1    |
| North: Bea  | ach Street (Nort | th)          |         |       |         |          |             |          |        |           |         |
| 7           | L2               | 12           | 0.0     | 0.170 | 8.6     | LOS A    | 0.7         | 4.8      | 0.69   | 0.87      | 50.1    |
| 8           | T1               | 30           | 0.0     | 0.170 | 8.9     | LOS A    | 0.7         | 4.8      | 0.69   | 0.87      | 51.2    |
| 9           | R2               | 51           | 0.0     | 0.170 | 13.3    | LOS B    | 0.7         | 4.8      | 0.69   | 0.87      | 51.1    |
| 9u          | U                | 1            | 0.0     | 0.170 | 15.3    | LOS B    | 0.7         | 4.8      | 0.69   | 0.87      | 51.9    |
| Approach    |                  | 94           | 0.0     | 0.170 | 11.3    | LOS B    | 0.7         | 4.8      | 0.69   | 0.87      | 51.0    |
| West: Hea   | ad Street (West) | )            |         |       |         |          |             |          |        |           |         |
| 10          | L2               | 41           | 0.0     | 0.489 | 4.8     | LOS A    | 4.2         | 30.2     | 0.36   | 0.45      | 53.5    |
| 11          | T1               | 1056         | 3.3     | 0.489 | 4.8     | LOS A    | 4.2         | 30.2     | 0.37   | 0.48      | 54.3    |
| 12          | R2               | 311          | 0.6     | 0.489 | 9.3     | LOS A    | 4.1         | 29.4     | 0.39   | 0.55      | 53.3    |
| 12u         | U                | 19           | 0.0     | 0.489 | 11.3    | LOS B    | 4.1         | 29.4     | 0.39   | 0.55      | 54.2    |
| Approach    |                  | 1427         | 2.6     | 0.489 | 5.9     | LOS A    | 4.2         | 30.2     | 0.37   | 0.49      | 54.1    |
| All Vehicle | es               | 3188         | 2.6     | 0.542 | 7.2     | LOS A    | 4.5         | 32.2     | 0.57   | 0.66      | 53.2    |
|             |                  |              |         |       |         |          |             |          |        |           |         |

## **Intersection 5 [2028 Design PM] Movement Summary:**

**♥** Site: 105 [2028 Design PM]

| Roundabl    | out               |              |         |       |         |          |             |          |        |           |         |
|-------------|-------------------|--------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performanc     | e - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov         | OD                | Demand       | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov               | Total        | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                   | veh/h        | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Be   | ach Street (Sou   | th)          |         |       |         |          |             |          |        |           |         |
| 1           | L2                | 564          | 1.2     | 0.563 | 10.0    | LOS B    | 3.6         | 25.3     | 0.85   | 0.99      | 50.5    |
| 2           | T1                | 39           | 0.0     | 0.563 | 10.7    | LOS B    | 3.3         | 23.5     | 0.84   | 0.99      | 50.9    |
| 3           | R2                | 27           | 0.0     | 0.563 | 15.1    | LOS B    | 3.3         | 23.5     | 0.84   | 0.99      | 50.8    |
| 3u          | U                 | 14           | 0.0     | 0.563 | 17.1    | LOS B    | 3.3         | 23.5     | 0.84   | 0.99      | 51.7    |
| Approach    |                   | 644          | 1.1     | 0.563 | 10.4    | LOS B    | 3.6         | 25.3     | 0.85   | 0.99      | 50.5    |
| East: Hea   | d Street (East)   |              |         |       |         |          |             |          |        |           |         |
| 4           | L2                | 25           | 0.0     | 0.625 | 10.0    | LOS A    | 6.7         | 48.3     | 0.87   | 0.91      | 50.8    |
| 5           | T1                | 1122         | 3.5     | 0.625 | 10.7    | LOS B    | 6.7         | 48.3     | 0.87   | 0.94      | 51.4    |
| 6           | R2                | 15           | 0.0     | 0.625 | 15.8    | LOS B    | 6.3         | 45.6     | 0.87   | 0.97      | 50.8    |
| 6u          | U                 | 6            | 0.0     | 0.625 | 17.8    | LOS B    | 6.3         | 45.6     | 0.87   | 0.97      | 51.6    |
| Approach    |                   | 1168         | 3.3     | 0.625 | 10.8    | LOS B    | 6.7         | 48.3     | 0.87   | 0.94      | 51.4    |
| North: Bea  | ach Street (Nortl | h)           |         |       |         |          |             |          |        |           |         |
| 7           | L2                | 30           | 0.0     | 0.250 | 9.8     | LOS A    | 1.1         | 7.6      | 0.76   | 0.90      | 49.4    |
| 8           | T1                | 26           | 0.0     | 0.250 | 10.1    | LOS B    | 1.1         | 7.6      | 0.76   | 0.90      | 50.5    |
| 9           | R2                | 60           | 0.0     | 0.250 | 14.5    | LOS B    | 1.1         | 7.6      | 0.76   | 0.90      | 50.4    |
| 9u          | U                 | 1            | 0.0     | 0.250 | 16.5    | LOS B    | 1.1         | 7.6      | 0.76   | 0.90      | 51.2    |
| Approach    |                   | 117          | 0.0     | 0.250 | 12.3    | LOS B    | 1.1         | 7.6      | 0.76   | 0.90      | 50.1    |
| West: Hea   | ad Street (West)  |              |         |       |         |          |             |          |        |           |         |
| 10          | L2                | 57           | 0.0     | 0.586 | 4.9     | LOS A    | 6.0         | 43.2     | 0.45   | 0.46      | 53.1    |
| 11          | T1                | 1158         | 3.0     | 0.586 | 5.0     | LOS A    | 6.0         | 43.2     | 0.46   | 0.49      | 53.9    |
| 12          | R2                | 457          | 0.4     | 0.586 | 9.5     | LOS A    | 5.9         | 41.9     | 0.48   | 0.57      | 52.7    |
| 12u         | U                 | 22           | 0.0     | 0.586 | 11.5    | LOS B    | 5.9         | 41.9     | 0.48   | 0.57      | 53.6    |
| Approach    |                   | 1694         | 2.2     | 0.586 | 6.3     | LOS A    | 6.0         | 43.2     | 0.47   | 0.51      | 53.6    |
| All Vehicle | es                | 3623         | 2.3     | 0.625 | 8.7     | LOS A    | 6.7         | 48.3     | 0.67   | 0.75      | 52.2    |
|             |                   |              |         |       |         |          |             |          |        |           |         |

## **Intersection 6 [2028 Base AM] Movement Summary:**

 $\nabla_{ ext{Site: 106 [2028 Base AM]}}$ 

|             | Tiola (Two was     |            |      |         |          |             |          |          |           |           |       |
|-------------|--------------------|------------|------|---------|----------|-------------|----------|----------|-----------|-----------|-------|
| Moveme      | nt Performance     | - Vehicles |      |         |          |             |          |          |           |           |       |
| Mov         |                    |            | Deg. | Average | Level of | 95% Back of | Queue    | Prop.    | Effective | Average   |       |
| ID          | Mov                | Total      | HV   | Satn    | Delay    | Service     | Vehicles | Distance | Queued    | Stop Rate | Speed |
|             |                    | veh/h      | %    | v/c     | sec      |             | veh      | m        |           | per veh   | km/h  |
| South: Litt | le Street (South)  |            |      |         |          |             |          |          |           |           |       |
| 1           | L2                 | 62         | 0.0  | 0.234   | 6.1      | LOS A       | 0.3      | 2.3      | 0.09      | 0.11      | 57.0  |
| 2           | T1                 | 349        | 1.7  | 0.234   | 0.2      | LOS A       | 0.3      | 2.3      | 0.09      | 0.11      | 58.6  |
| 3           | R2                 | 22         | 0.0  | 0.234   | 7.1      | LOS A       | 0.3      | 2.3      | 0.09      | 0.11      | 56.4  |
| 3u          | U                  | 1          | 0.0  | 0.234   | 9.5      | LOS A       | 0.3      | 2.3      | 0.09      | 0.11      | 56.5  |
| Approach    |                    | 434        | 1.4  | 0.234   | 1.4      | NA          | 0.3      | 2.3      | 0.09      | 0.11      | 58.2  |
| East: Wall  | is Street (East)   |            |      |         |          |             |          |          |           |           |       |
| 4           | L2                 | 26         | 7.7  | 0.062   | 6.8      | LOS A       | 0.2      | 1.5      | 0.42      | 0.67      | 51.1  |
| 5           | T1                 | 1          | 0.0  | 0.062   | 9.0      | LOS A       | 0.2      | 1.5      | 0.42      | 0.67      | 51.6  |
| 6           | R2                 | 17         | 0.0  | 0.062   | 11.1     | LOS B       | 0.2      | 1.5      | 0.42      | 0.67      | 51.0  |
| 6u          | U                  | 1          | 0.0  | 0.062   | 6.9      | LOS A       | 0.2      | 1.5      | 0.42      | 0.67      | 51.0  |
| Approach    |                    | 45         | 4.4  | 0.062   | 8.5      | LOS A       | 0.2      | 1.5      | 0.42      | 0.67      | 51.1  |
| North: Bea  | ach Street (North) |            |      |         |          |             |          |          |           |           |       |
| 7           | L2                 | 57         | 0.0  | 0.210   | 6.2      | LOS A       | 0.3      | 2.1      | 0.10      | 0.11      | 56.9  |
| 8           | T1                 | 310        | 2.3  | 0.210   | 0.2      | LOS A       | 0.3      | 2.1      | 0.10      | 0.11      | 58.5  |
| 9           | R2                 | 20         | 0.0  | 0.210   | 7.4      | LOS A       | 0.3      | 2.1      | 0.10      | 0.11      | 56.3  |
| 9u          | U                  | 1          | 0.0  | 0.210   | 9.9      | LOS A       | 0.3      | 2.1      | 0.10      | 0.11      | 56.4  |
| Approach    |                    | 388        | 1.8  | 0.210   | 1.5      | NA          | 0.3      | 2.1      | 0.10      | 0.11      | 58.1  |
| West: Mer   | morial Drive (Wes  | st)        |      |         |          |             |          |          |           |           |       |
| 10          | L2                 | 30         | 0.0  | 0.104   | 6.8      | LOS A       | 0.4      | 2.5      | 0.51      | 0.73      | 50.9  |
| 11          | T1                 | 5          | 0.0  | 0.104   | 9.0      | LOS A       | 0.4      | 2.5      | 0.51      | 0.73      | 51.0  |
| 12          | R2                 | 31         | 3.2  | 0.104   | 11.6     | LOS B       | 0.4      | 2.5      | 0.51      | 0.73      | 50.3  |
| Approach    |                    | 66         | 1.5  | 0.104   | 9.2      | LOS A       | 0.4      | 2.5      | 0.51      | 0.73      | 50.6  |
| All Vehicle | es                 | 933        | 1.7  | 0.234   | 2.3      | NA          | 0.4      | 2.5      | 0.14      | 0.18      | 57.2  |
|             |                    |            |      |         |          |             |          |          |           |           |       |

## **Intersection 6 [2028 Base PM] Movement Summary:**

∇<sub>Site: 106</sub> [2028 Base PM]

|               | Tiola (Two Way)    |        |     |       |         |          |             |          |        |           |         |
|---------------|--------------------|--------|-----|-------|---------|----------|-------------|----------|--------|-----------|---------|
|               | Performance -      |        |     |       |         |          |             |          |        |           |         |
| Mov           | OD                 | Demand |     | Deg.  | Average | Level of | 95% Back of |          | Prop.  | Effective | Average |
| ID            | Mov                | Total  | HV  | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|               |                    | veh/h  | %   | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Little | Street (South)     |        |     |       |         |          |             |          |        |           |         |
| 1             | L2                 | 57     | 1.8 | 0.244 | 6.3     | LOS A    | 0.3         | 2.3      | 0.09   | 0.10      | 57.1    |
| 2             | T1                 | 375    | 1.3 | 0.244 | 0.2     | LOS A    | 0.3         | 2.3      | 0.09   | 0.10      | 58.7    |
| 3             | R2                 | 20     | 0.0 | 0.244 | 7.5     | LOS A    | 0.3         | 2.3      | 0.09   | 0.10      | 56.5    |
| 3u            | U                  | 1      | 0.0 | 0.244 | 10.3    | LOS B    | 0.3         | 2.3      | 0.09   | 0.10      | 56.6    |
| Approach      |                    | 453    | 1.3 | 0.244 | 1.3     | NA       | 0.3         | 2.3      | 0.09   | 0.10      | 58.4    |
| East: Wallis  | Street (East)      |        |     |       |         |          |             |          |        |           |         |
| 4             | L2                 | 42     | 2.4 | 0.093 | 6.9     | LOS A    | 0.3         | 2.3      | 0.43   | 0.68      | 51.1    |
| 5             | T1                 | 1      | 0.0 | 0.093 | 9.9     | LOS A    | 0.3         | 2.3      | 0.43   | 0.68      | 51.3    |
| 6             | R2                 | 21     | 0.0 | 0.093 | 12.6    | LOS B    | 0.3         | 2.3      | 0.43   | 0.68      | 50.7    |
| 6u            | U                  | 2      | 0.0 | 0.093 | 6.9     | LOS A    | 0.3         | 2.3      | 0.43   | 0.68      | 50.8    |
| Approach      |                    | 66     | 1.5 | 0.093 | 8.8     | LOS A    | 0.3         | 2.3      | 0.43   | 0.68      | 51.0    |
| North: Bead   | ch Street (North)  |        |     |       |         |          |             |          |        |           |         |
| 7             | L2                 | 48     | 0.0 | 0.237 | 6.4     | LOS A    | 0.3         | 2.1      | 0.09   | 0.09      | 57.2    |
| 8             | T1                 | 375    | 0.5 | 0.237 | 0.2     | LOS A    | 0.3         | 2.1      | 0.09   | 0.09      | 58.8    |
| 9             | R2                 | 19     | 0.0 | 0.237 | 7.6     | LOS A    | 0.3         | 2.1      | 0.09   | 0.09      | 56.6    |
| 9u            | U                  | 1      | 0.0 | 0.237 | 10.3    | LOS B    | 0.3         | 2.1      | 0.09   | 0.09      | 56.7    |
| Approach      |                    | 443    | 0.5 | 0.237 | 1.2     | NA       | 0.3         | 2.1      | 0.09   | 0.09      | 58.5    |
| West: Mem     | orial Drive (West) |        |     |       |         |          |             |          |        |           |         |
| 10            | L2                 | 45     | 4.4 | 0.179 | 7.1     | LOS A    | 0.6         | 4.4      | 0.55   | 0.76      | 50.0    |
| 11            | T1                 | 5      | 0.0 | 0.179 | 10.1    | LOS B    | 0.6         | 4.4      | 0.55   | 0.76      | 50.3    |
| 12            | R2                 | 52     | 0.0 | 0.179 | 12.9    | LOS B    | 0.6         | 4.4      | 0.55   | 0.76      | 49.7    |
| Approach      |                    | 102    | 2.0 | 0.179 | 10.2    | LOS B    | 0.6         | 4.4      | 0.55   | 0.76      | 49.9    |
| All Vehicles  |                    | 1064   | 1.0 | 0.244 | 2.6     | NA       | 0.6         | 4.4      | 0.15   | 0.19      | 57.0    |

#### **Intersection 6 [2028 Design AM] Movement Summary:**

 $\nabla_{\text{Site: 106 [2028 Design AM]}}$ 

|             | nt Performar    | nce - Vehicles |         |       |         |          |             |          |        |           |         |
|-------------|-----------------|----------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Mov         | OD              | Demand         | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov             | Total          | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                 | veh/h          | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| SouthEast   | : Little Street | (South)        |         |       |         |          |             |          |        | ·         |         |
| 21a         | L1              | 62             | 0.0     | 0.280 | 5.5     | LOS A    | 1.6         | 11.4     | 0.08   | 0.53      | 53.5    |
| 23a         | R1              | 403            | 0.0     | 0.280 | 4.6     | LOS A    | 1.6         | 11.4     | 0.08   | 0.53      | 54.1    |
| 23b         | R3              | 22             | 0.0     | 0.280 | 8.1     | LOS A    | 1.6         | 11.4     | 0.08   | 0.53      | 53.4    |
| 23u         | U               | 1              | 0.0     | 0.280 | 10.2    | LOS B    | 1.6         | 11.4     | 0.08   | 0.53      | 53.6    |
| Approach    |                 | 488            | 0.0     | 0.280 | 4.9     | NA       | 1.6         | 11.4     | 0.08   | 0.53      | 54.0    |
| East: Walli | is Street (Eas  | t)             |         |       |         |          |             |          |        |           |         |
| 4b          | L3              | 26             | 0.0     | 0.067 | 7.7     | LOS A    | 0.2         | 1.6      | 0.45   | 0.70      | 51.0    |
| 5           | T1              | 1              | 0.0     | 0.067 | 10.0    | LOS B    | 0.2         | 1.6      | 0.45   | 0.70      | 50.8    |
| 6           | R2              | 17             | 0.0     | 0.067 | 12.4    | LOS B    | 0.2         | 1.6      | 0.45   | 0.70      | 50.2    |
| 6u          | U               | 1              | 0.0     | 0.067 | 6.9     | LOS A    | 0.2         | 1.6      | 0.45   | 0.70      | 50.3    |
| Approach    |                 | 45             | 0.0     | 0.067 | 9.5     | LOS A    | 0.2         | 1.6      | 0.45   | 0.70      | 50.7    |
| North: Bea  | ach Street (No  | orth)          |         |       |         |          |             |          |        |           |         |
| 7           | L2              | 57             | 0.0     | 0.230 | 5.7     | LOS A    | 0.2         | 1.5      | 0.03   | 0.53      | 54.2    |
| 7a          | L1              | 355            | 0.0     | 0.230 | 4.6     | LOS A    | 0.2         | 1.5      | 0.03   | 0.53      | 54.2    |
| 9           | R2              | 20             | 0.0     | 0.230 | 5.7     | LOS A    | 0.2         | 1.5      | 0.03   | 0.53      | 53.7    |
| 9u          | U               | 1              | 0.0     | 0.230 | 10.7    | LOS B    | 0.2         | 1.5      | 0.03   | 0.53      | 53.7    |
| Approach    |                 | 433            | 0.0     | 0.230 | 4.8     | NA       | 0.2         | 1.5      | 0.03   | 0.53      | 54.2    |
| West: Men   | norial Drive (V | Vest)          |         |       |         |          |             |          |        |           |         |
| 10          | L2              | 30             | 0.0     | 0.114 | 7.0     | LOS A    | 0.4         | 2.7      | 0.54   | 0.74      | 50.7    |
| 11          | T1              | 5              | 0.0     | 0.114 | 10.1    | LOS B    | 0.4         | 2.7      | 0.54   | 0.74      | 50.8    |
| 12a         | R1              | 31             | 0.0     | 0.114 | 11.7    | LOS B    | 0.4         | 2.7      | 0.54   | 0.74      | 50.7    |
| Approach    |                 | 66             | 0.0     | 0.114 | 9.5     | LOS A    | 0.4         | 2.7      | 0.54   | 0.74      | 50.7    |
| All Vehicle | s               | 1032           | 0.0     | 0.280 | 5.3     | NA       | 1.6         | 11.4     | 0.10   | 0.55      | 53.7    |

#### **Intersection 6 [2028 Design PM] Movement Summary:**

**∇**Site: 106 [2028 Design PM]

|              | t Performan     | ice - Vehicles |         |       |         |          |             |          |        |           |         |
|--------------|-----------------|----------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Mov          | OD              | Demand         | d Flows | Deg.  | Average | Level of | 95% Back of | Oueue    | Prop.  | Effective | Average |
| ID           | Mov             | Total          | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|              |                 | veh/h          | %       | v/c   | sec     | 33.1.33  | veh         | m        | 440404 | per veh   | km/h    |
| SouthFast:   | : Little Street |                | /0      | V/ O  | 300     |          | VOII        |          |        | per veri  | KIII    |
| 21a          | L1              | 57             | 0.0     | 0.336 | 5.6     | LOS A    | 2.1         | 14.5     | 0.08   | 0.53      | 53.6    |
| 23a          | R1              | 501            | 0.0     | 0.336 | 4.6     | LOS A    | 2.1         | 14.5     | 0.08   | 0.53      | 54.1    |
| 23b          | R3              | 20             | 0.0     | 0.336 | 10.1    | LOS B    | 2.1         | 14.5     | 0.08   | 0.53      | 53.4    |
| 23u          | U               | 1              | 0.0     | 0.336 | 14.4    | LOS B    | 2.1         | 14.5     | 0.08   | 0.53      | 53.6    |
| Approach     |                 | 579            | 0.0     | 0.336 | 4.9     | NA       | 2.1         | 14.5     | 0.08   | 0.53      | 54.0    |
| East: Wallis | s Street (East  | t)             |         |       |         |          |             |          |        |           |         |
| 4b           | L3              | 42             | 0.0     | 0.137 | 8.9     | LOS A    | 0.5         | 3.2      | 0.54   | 0.78      | 49.2    |
| 5            | T1              | 1              | 0.0     | 0.137 | 15.0    | LOS B    | 0.5         | 3.2      | 0.54   | 0.78      | 49.0    |
| 6            | R2              | 21             | 0.0     | 0.137 | 19.1    | LOS C    | 0.5         | 3.2      | 0.54   | 0.78      | 48.5    |
| 6u           | U               | 2              | 0.0     | 0.137 | 6.9     | LOS A    | 0.5         | 3.2      | 0.54   | 0.78      | 48.5    |
| Approach     |                 | 66             | 0.0     | 0.137 | 12.2    | LOS B    | 0.5         | 3.2      | 0.54   | 0.78      | 49.0    |
| North: Bea   | ich Street (No  | rth)           |         |       |         |          |             |          |        |           |         |
| 7            | L2              | 48             | 0.0     | 0.334 | 5.7     | LOS A    | 0.2         | 1.6      | 0.02   | 0.54      | 54.3    |
| 7a           | L1              | 563            | 0.0     | 0.334 | 4.6     | LOS A    | 0.2         | 1.6      | 0.02   | 0.54      | 54.3    |
| 9            | R2              | 19             | 0.0     | 0.334 | 5.7     | LOS A    | 0.2         | 1.6      | 0.02   | 0.54      | 53.7    |
| 9u           | U               | 1              | 0.0     | 0.334 | 13.2    | LOS B    | 0.2         | 1.6      | 0.02   | 0.54      | 53.8    |
| Approach     |                 | 631            | 0.0     | 0.334 | 4.7     | NA       | 0.2         | 1.6      | 0.02   | 0.54      | 54.3    |
| West: Mem    | norial Drive (V | Vest)          |         |       |         |          |             |          |        |           |         |
| 10           | L2              | 45             | 0.0     | 0.272 | 8.4     | LOS A    | 1.0         | 6.8      | 0.71   | 0.88      | 47.4    |
| 11           | T1              | 5              | 0.0     | 0.272 | 16.3    | LOS C    | 1.0         | 6.8      | 0.71   | 0.88      | 47.5    |
| 12a          | R1              | 52             | 0.0     | 0.272 | 19.4    | LOS C    | 1.0         | 6.8      | 0.71   | 0.88      | 47.4    |
| Approach     |                 | 102            | 0.0     | 0.272 | 14.4    | LOS B    | 1.0         | 6.8      | 0.71   | 0.88      | 47.4    |
| All Vehicles | S               | 1378           | 0.0     | 0.336 | 5.9     | NA       | 2.1         | 14.5     | 0.12   | 0.57      | 53.3    |

## **Intersection 7 [2028 Base AM] Movement Summary:**

 $\nabla_{
m Site:~107~[2028~Base~AM]}$ 

|              | Tiela (Two-V   | • /            |       |       |         |          |          |          |        |           |         |
|--------------|----------------|----------------|-------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Movemen      | t Performar    | nce - Vehicles |       |       |         |          |          |          |        |           |         |
| Mov          | OD             | Demand         | Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID           | Mov            | Total          | HV    | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|              |                | veh/h          | %     | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Mad   | Intosh Street  | t (South)      |       |       |         |          |          |          |        |           |         |
| 1            | L2             | 82             | 0.0   | 0.214 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.12      | 57.2    |
| 2            | T1             | 726            | 5.1   | 0.214 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.05      | 59.4    |
| 3            | R2             | 270            | 2.2   | 0.628 | 19.7    | LOS C    | 3.7      | 26.7     | 0.86   | 1.14      | 44.1    |
| 3u           | U              | 1              | 0.0   | 0.628 | 29.4    | LOS D    | 3.7      | 26.7     | 0.86   | 1.14      | 44.0    |
| Approach     |                | 1079           | 4.0   | 0.628 | 5.4     | NA       | 3.7      | 26.7     | 0.22   | 0.33      | 54.5    |
| East: Stran  | nd Street (Eas | st)            |       |       |         |          |          |          |        |           |         |
| 4            | L2             | 167            | 4.2   | 0.204 | 8.1     | LOS A    | 0.8      | 5.6      | 0.49   | 0.74      | 51.5    |
| Approach     |                | 167            | 4.2   | 0.204 | 8.1     | LOS A    | 0.8      | 5.6      | 0.49   | 0.74      | 51.5    |
| North: Mac   | Intosh Street  | (North)        |       |       |         |          |          |          |        |           |         |
| 7            | L2             | 63             | 6.3   | 0.261 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.08      | 57.4    |
| 8            | T1             | 916            | 4.0   | 0.261 | 0.1     | LOS A    | 0.1      | 0.7      | 0.01   | 0.04      | 59.6    |
| 9            | R2             | 1              | 0.0   | 0.261 | 12.6    | LOS B    | 0.1      | 0.7      | 0.01   | 0.00      | 57.9    |
| 9u           | U              | 1              | 0.0   | 0.261 | 19.2    | LOS C    | 0.1      | 0.7      | 0.01   | 0.00      | 57.7    |
| Approach     |                | 981            | 4.2   | 0.261 | 0.5     | NA       | 0.1      | 0.7      | 0.01   | 0.04      | 59.4    |
| West: Midd   | dle Street (We | est)           |       |       |         |          |          |          |        |           |         |
| 10           | L2             | 4              | 0.0   | 0.004 | 6.9     | LOS A    | 0.0      | 0.1      | 0.37   | 0.56      | 52.5    |
| Approach     |                | 4              | 0.0   | 0.004 | 6.9     | LOS A    | 0.0      | 0.1      | 0.37   | 0.56      | 52.5    |
| All Vehicles | 3              | 2231           | 4.1   | 0.628 | 3.4     | NA       | 3.7      | 26.7     | 0.15   | 0.23      | 56.3    |

## **Intersection 7 [2028 Base PM] Movement Summary:**

∇<sub>Site: 107</sub> [2028 Base PM]

|              | rieia (Two-v   | • ,           |         |       |         |          |          |          |        |           |         |
|--------------|----------------|---------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Movement     | t Performan    | ce - Vehicles |         |       |         |          |          |          |        |           |         |
| Mov          | OD             | Demand        | d Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID           | Mov            | Total         | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|              |                | veh/h         | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Mac   | Intosh Street  | (South)       |         |       |         |          |          |          |        |           |         |
| 1            | L2             | 48            | 0.0     | 0.212 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.07      | 57.7    |
| 2            | T1             | 756           | 3.8     | 0.212 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.03      | 59.6    |
| 3            | R2             | 201           | 1.0     | 0.468 | 16.7    | LOS C    | 2.3      | 16.1     | 0.81   | 1.03      | 45.8    |
| 3u           | U              | 1             | 0.0     | 0.468 | 26.5    | LOS D    | 2.3      | 16.1     | 0.81   | 1.03      | 45.7    |
| Approach     |                | 1006          | 3.1     | 0.468 | 3.7     | NA       | 2.3      | 16.1     | 0.16   | 0.23      | 56.1    |
| East: Stran  | d Street (Eas  | t)            |         |       |         |          |          |          |        |           |         |
| 4            | L2             | 221           | 3.2     | 0.272 | 8.4     | LOS A    | 1.1      | 8.0      | 0.52   | 0.77      | 51.4    |
| Approach     |                | 221           | 3.2     | 0.272 | 8.4     | LOS A    | 1.1      | 8.0      | 0.52   | 0.77      | 51.4    |
| North: Macl  | Intosh Street  | (North)       |         |       |         |          |          |          |        |           |         |
| 7            | L2             | 56            | 3.6     | 0.263 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.07      | 57.6    |
| 8            | T1             | 933           | 3.6     | 0.263 | 0.1     | LOS A    | 0.1      | 0.7      | 0.01   | 0.03      | 59.6    |
| 9            | R2             | 1             | 0.0     | 0.263 | 12.5    | LOS B    | 0.1      | 0.7      | 0.01   | 0.00      | 57.9    |
| 9u           | U              | 1             | 0.0     | 0.263 | 20.0    | LOS C    | 0.1      | 0.7      | 0.01   | 0.00      | 57.6    |
| Approach     |                | 991           | 3.6     | 0.263 | 0.4     | NA       | 0.1      | 0.7      | 0.01   | 0.04      | 59.5    |
| West: Midd   | lle Street (We | st)           |         |       |         |          |          |          |        |           |         |
| 10           | L2             | 5             | 0.0     | 0.005 | 7.0     | LOS A    | 0.0      | 0.1      | 0.39   | 0.58      | 52.4    |
| Approach     |                | 5             | 0.0     | 0.005 | 7.0     | LOS A    | 0.0      | 0.1      | 0.39   | 0.58      | 52.4    |
| All Vehicles | 3              | 2223          | 3.3     | 0.468 | 2.7     | NA       | 2.3      | 16.1     | 0.13   | 0.20      | 57.0    |

## **Intersection 7 [2028 Design AM] Movement Summary:**

∇<sub>Site: 107</sub> [2028 Design AM]

| Circina     | 7 1101a (1110  | πω,            |       |       |         |          |             |          |        |           |         |
|-------------|----------------|----------------|-------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme      | nt Performa    | nce - Vehicles |       |       |         |          |             |          |        |           |         |
| Mov         | OD             | Demand         | Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID          | Mov            | Total          | HV    | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|             |                | veh/h          | %     | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Ma   | acIntosh Stree | et (South)     |       |       |         |          |             |          |        |           |         |
| 1           | L2             | 89             | 0.0   | 0.217 | 5.6     | LOS A    | 0.0         | 0.0      | 0.00   | 0.13      | 57.2    |
| 2           | T1             | 728            | 5.1   | 0.217 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.06      | 59.4    |
| 3           | R2             | 270            | 2.2   | 0.641 | 20.4    | LOS C    | 3.8         | 27.4     | 0.87   | 1.15      | 43.8    |
| 3u          | U              | 1              | 0.0   | 0.641 | 30.4    | LOS D    | 3.8         | 27.4     | 0.87   | 1.15      | 43.7    |
| Approach    | l              | 1088           | 4.0   | 0.641 | 5.6     | NA       | 3.8         | 27.4     | 0.22   | 0.34      | 54.4    |
| East: Stra  | and Street (Ea | st)            |       |       |         |          |             |          |        |           |         |
| 4           | L2             | 167            | 4.2   | 0.206 | 8.2     | LOS A    | 0.8         | 5.7      | 0.50   | 0.74      | 51.5    |
| Approach    |                | 167            | 4.2   | 0.206 | 8.2     | LOS A    | 0.8         | 5.7      | 0.50   | 0.74      | 51.5    |
| North: Ma   | acIntosh Stree | t (North)      |       |       |         |          |             |          |        |           |         |
| 7           | L2             | 63             | 6.3   | 0.265 | 5.6     | LOS A    | 0.0         | 0.0      | 0.00   | 0.08      | 57.4    |
| 8           | T1             | 929            | 4.0   | 0.265 | 0.1     | LOS A    | 0.1         | 0.7      | 0.01   | 0.04      | 59.6    |
| 9           | R2             | 1              | 0.0   | 0.265 | 12.7    | LOS B    | 0.1         | 0.7      | 0.01   | 0.00      | 57.9    |
| 9u          | U              | 1              | 0.0   | 0.265 | 19.4    | LOS C    | 0.1         | 0.7      | 0.01   | 0.00      | 57.7    |
| Approach    | l              | 994            | 4.1   | 0.265 | 0.5     | NA       | 0.1         | 0.7      | 0.01   | 0.04      | 59.4    |
| West: Mic   | ddle Street (W | est)           |       |       |         |          |             |          |        |           |         |
| 10          | L2             | 4              | 0.0   | 0.004 | 6.8     | LOS A    | 0.0         | 0.1      | 0.37   | 0.56      | 52.5    |
| Approach    | 1              | 4              | 0.0   | 0.004 | 6.8     | LOS A    | 0.0         | 0.1      | 0.37   | 0.56      | 52.5    |
| All Vehicle | es             | 2253           | 4.0   | 0.641 | 3.5     | NA       | 3.8         | 27.4     | 0.14   | 0.24      | 56.3    |
|             |                |                |       |       |         |          |             |          |        |           |         |

## **Intersection 7 [2028 Design PM] Movement Summary:**

**∇**Site: 107 [2028 Design PM]

| <u> </u>     | 11014 (1110   | ,              |         |       |         |          |          |          |        |           |         |
|--------------|---------------|----------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Movemen      | t Performa    | nce - Vehicles |         |       |         |          |          |          |        |           |         |
| Mov          | OD            | Demand         | d Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID           | Mov           | Total          | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|              |               | veh/h          | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Mac   | Intosh Stree  | et (South)     |         |       |         |          |          |          |        |           |         |
| 1            | L2            | 80             | 0.0     | 0.222 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.11      | 57.3    |
| 2            | T1            | 764            | 3.8     | 0.222 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.05      | 59.5    |
| 3            | R2            | 201            | 1.0     | 0.489 | 17.6    | LOS C    | 2.4      | 17.0     | 0.83   | 1.04      | 45.3    |
| 3u           | U             | 1              | 0.0     | 0.489 | 28.1    | LOS D    | 2.4      | 17.0     | 0.83   | 1.04      | 45.2    |
| Approach     |               | 1046           | 3.0     | 0.489 | 3.9     | NA       | 2.4      | 17.0     | 0.16   | 0.25      | 55.9    |
| East: Stran  | d Street (Ea  | st)            |         |       |         |          |          |          |        |           |         |
| 4            | L2            | 221            | 3.2     | 0.277 | 8.6     | LOS A    | 1.2      | 8.3      | 0.53   | 0.78      | 51.2    |
| Approach     |               | 221            | 3.2     | 0.277 | 8.6     | LOS A    | 1.2      | 8.3      | 0.53   | 0.78      | 51.2    |
| North: Mac   | Intosh Stree  | t (North)      |         |       |         |          |          |          |        |           |         |
| 7            | L2            | 56             | 3.6     | 0.270 | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.07      | 57.6    |
| 8            | T1            | 962            | 3.5     | 0.270 | 0.1     | LOS A    | 0.1      | 0.7      | 0.01   | 0.03      | 59.6    |
| 9            | R2            | 1              | 0.0     | 0.270 | 13.2    | LOS B    | 0.1      | 0.7      | 0.01   | 0.00      | 57.9    |
| 9u           | U             | 1              | 0.0     | 0.270 | 20.5    | LOS C    | 0.1      | 0.7      | 0.01   | 0.00      | 57.6    |
| Approach     |               | 1020           | 3.5     | 0.270 | 0.4     | NA       | 0.1      | 0.7      | 0.01   | 0.03      | 59.5    |
| West: Midd   | lle Street (W | est)           |         |       |         |          |          |          |        |           |         |
| 10           | L2            | 5              | 0.0     | 0.005 | 7.0     | LOS A    | 0.0      | 0.1      | 0.38   | 0.57      | 52.4    |
| Approach     |               | 5              | 0.0     | 0.005 | 7.0     | LOS A    | 0.0      | 0.1      | 0.38   | 0.57      | 52.4    |
| All Vehicles | 5             | 2292           | 3.2     | 0.489 | 2.8     | NA       | 2.4      | 17.0     | 0.13   | 0.20      | 56.9    |

# **Intersection 8 [2028 Design AM] Movement Summary:**

**♥** Site: 108 [2028 Design AM]

Forster Roundabout Access

Roundabout

|            | Jour             |               |         |       |         |          |             |          |        |           |         |
|------------|------------------|---------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme     | ent Performan    | ce - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov        | OD               | Demand        | d Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID         | Mov              | Total         | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|            |                  | veh/h         | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: Si  | ite Access       |               |         |       |         |          |             |          |        |           |         |
| 1          | L2               | 89            | 0.0     | 0.097 | 5.7     | LOS A    | 0.5         | 3.4      | 0.42   | 0.59      | 53.0    |
| 2          | T1               | 1             | 0.0     | 0.097 | 5.9     | LOS A    | 0.5         | 3.4      | 0.42   | 0.59      | 54.1    |
| 3          | R2               | 12            | 0.0     | 0.097 | 9.7     | LOS A    | 0.5         | 3.4      | 0.42   | 0.59      | 54.1    |
| 3u         | U                | 1             | 0.0     | 0.097 | 11.5    | LOS B    | 0.5         | 3.4      | 0.42   | 0.59      | 54.8    |
| Approach   | 1                | 103           | 0.0     | 0.097 | 6.2     | LOS A    | 0.5         | 3.4      | 0.42   | 0.59      | 53.1    |
| East: Lak  | ke Street (East) |               |         |       |         |          |             |          |        |           |         |
| 4          | L2               | 6             | 0.0     | 0.182 | 4.7     | LOS A    | 1.0         | 6.8      | 0.21   | 0.46      | 53.6    |
| 5          | T1               | 237           | 0.0     | 0.182 | 5.0     | LOS A    | 1.0         | 6.8      | 0.21   | 0.46      | 54.7    |
| 6          | R2               | 1             | 0.0     | 0.182 | 8.5     | LOS A    | 1.0         | 6.8      | 0.21   | 0.46      | 54.3    |
| 6u         | U                | 1             | 0.0     | 0.182 | 10.5    | LOS B    | 1.0         | 6.8      | 0.21   | 0.46      | 55.4    |
| Approach   | 1                | 245           | 0.0     | 0.182 | 5.0     | LOS A    | 1.0         | 6.8      | 0.21   | 0.46      | 54.7    |
| West: Lal  | ke Street (West  | t)            |         |       |         |          |             |          |        |           |         |
| 10         | L2               | 1             | 0.0     | 0.129 | 4.4     | LOS A    | 0.7         | 5.1      | 0.09   | 0.51      | 53.3    |
| 11         | T1               | 131           | 0.0     | 0.129 | 4.4     | LOS A    | 0.7         | 5.1      | 0.09   | 0.51      | 54.7    |
| 12         | R2               | 48            | 0.0     | 0.129 | 8.5     | LOS A    | 0.7         | 5.1      | 0.09   | 0.51      | 54.4    |
| 12u        | U                | 15            | 0.0     | 0.129 | 10.3    | LOS B    | 0.7         | 5.1      | 0.09   | 0.51      | 55.0    |
| Approach   | 1                | 195           | 0.0     | 0.129 | 5.9     | LOS A    | 0.7         | 5.1      | 0.09   | 0.51      | 54.7    |
| All Vehicl | les              | 543           | 0.0     | 0.182 | 5.5     | LOS A    | 1.0         | 6.8      | 0.21   | 0.50      | 54.4    |
|            |                  |               |         |       |         |          |             |          |        |           |         |

## Intersection 8 [2028 Design PM] Movement Summary:

**♥** Site: 108 [2028 Design PM]

Forster Roundabout Access

Roundabout

| Moveme      | nt Performa   | ance - Vehicles |         |       |         |          |          |          |        |           |         |
|-------------|---------------|-----------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov         | OD            | Deman           | d Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID          | Mov           | Total           | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|             |               | veh/h           | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: Sit  | e Access      |                 |         |       |         |          |          |          |        |           |         |
| 1           | L2            | 198             | 0.0     | 0.200 | 5.4     | LOS A    | 1.2      | 8.1      | 0.39   | 0.57      | 53.1    |
| 2           | T1            | 1               | 0.0     | 0.200 | 5.6     | LOS A    | 1.2      | 8.1      | 0.39   | 0.57      | 54.2    |
| 3           | R2            | 27              | 0.0     | 0.200 | 9.4     | LOS A    | 1.2      | 8.1      | 0.39   | 0.57      | 54.2    |
| 3u          | U             | 1               | 0.0     | 0.200 | 11.2    | LOS B    | 1.2      | 8.1      | 0.39   | 0.57      | 54.9    |
| Approach    |               | 227             | 0.0     | 0.200 | 5.9     | LOS A    | 1.2      | 8.1      | 0.39   | 0.57      | 53.2    |
| East: Lak   | e Street (Eas | it)             |         |       |         |          |          |          |        |           |         |
| 4           | L2            | 27              | 0.0     | 0.180 | 5.8     | LOS A    | 1.0      | 6.8      | 0.44   | 0.56      | 52.7    |
| 5           | T1            | 164             | 0.0     | 0.180 | 6.0     | LOS A    | 1.0      | 6.8      | 0.44   | 0.56      | 53.8    |
| 6           | R2            | 1               | 0.0     | 0.180 | 9.6     | LOS A    | 1.0      | 6.8      | 0.44   | 0.56      | 53.5    |
| 6u          | U             | 1               | 0.0     | 0.180 | 11.6    | LOS B    | 1.0      | 6.8      | 0.44   | 0.56      | 54.5    |
| Approach    |               | 193             | 0.0     | 0.180 | 6.1     | LOS A    | 1.0      | 6.8      | 0.44   | 0.56      | 53.6    |
| West: Lak   | ke Street (We | est)            |         |       |         |          |          |          |        |           |         |
| 10          | L2            | 1               | 0.0     | 0.330 | 4.5     | LOS A    | 2.3      | 16.0     | 0.17   | 0.54      | 52.6    |
| 11          | T1            | 249             | 0.0     | 0.330 | 4.5     | LOS A    | 2.3      | 16.0     | 0.17   | 0.54      | 54.1    |
| 12          | R2            | 242             | 0.0     | 0.330 | 8.5     | LOS A    | 2.3      | 16.0     | 0.17   | 0.54      | 53.7    |
| 12u         | U             | 6               | 0.0     | 0.330 | 10.4    | LOS B    | 2.3      | 16.0     | 0.17   | 0.54      | 54.3    |
| Approach    |               | 498             | 0.0     | 0.330 | 6.6     | LOS A    | 2.3      | 16.0     | 0.17   | 0.54      | 53.9    |
| All Vehicle | es            | 918             | 0.0     | 0.330 | 6.3     | LOS A    | 2.3      | 16.0     | 0.28   | 0.55      | 53.7    |

## **Intersection 9 [2028 Design AM] Movement Summary:**

∇<sub>Site: 109</sub> [2028 Design AM]

West / Site Access 2 Giveway / Yield (Two-Way)

|            | , (               | , /           |         |       |         |          |             |          |        |           |         |
|------------|-------------------|---------------|---------|-------|---------|----------|-------------|----------|--------|-----------|---------|
| Moveme     | ent Performand    | ce - Vehicles |         |       |         |          |             |          |        |           |         |
| Mov        | OD                | Demand        | l Flows | Deg.  | Average | Level of | 95% Back of | Queue    | Prop.  | Effective | Average |
| ID         | Mov               | Total         | HV      | Satn  | Delay   | Service  | Vehicles    | Distance | Queued | Stop Rate | Speed   |
|            |                   | veh/h         | %       | v/c   | sec     |          | veh         | m        |        | per veh   | km/h    |
| South: W   | est Street (Sout  | h)            |         |       |         |          |             |          |        |           |         |
| 2          | T1                | 100           | 0.0     | 0.051 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.01      | 59.9    |
| 3          | R2                | 1             | 0.0     | 0.051 | 5.8     | LOS A    | 0.0         | 0.0      | 0.00   | 0.01      | 57.5    |
| Approach   | 1                 | 101           | 0.0     | 0.051 | 0.1     | NA       | 0.0         | 0.0      | 0.00   | 0.01      | 59.9    |
| North: We  | est Street (North | n)            |         |       |         |          |             |          |        |           |         |
| 7          | L2                | 9             | 0.0     | 0.032 | 5.5     | LOS A    | 0.0         | 0.0      | 0.00   | 0.09      | 57.6    |
| 8          | T1                | 52            | 0.0     | 0.032 | 0.0     | LOS A    | 0.0         | 0.0      | 0.00   | 0.09      | 59.2    |
| Approach   | 1                 | 61            | 0.0     | 0.032 | 0.8     | NA       | 0.0         | 0.0      | 0.00   | 0.09      | 59.0    |
| All Vehicl | es                | 162           | 0.0     | 0.051 | 0.3     | NA       | 0.0         | 0.0      | 0.00   | 0.04      | 59.5    |

## **Intersection 9 [2028 Design PM Movement Summary:**

∇<sub>Site: 109</sub> [2028 Design PM]

West / Site Access 2 Giveway / Yield (Two-Way)

| Moveme      | nt Performanc      | e - Vehicles |         |       |         |          |          |          |        |           |         |
|-------------|--------------------|--------------|---------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Mov         | OD                 | Deman        | d Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID          | Mov                | Total        | HV      | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|             |                    | veh/h        | %       | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| South: W    | est Street (South  | 1)           |         |       |         |          |          |          |        |           |         |
| 2           | T1                 | 113          | 0.0     | 0.058 | 0.0     | LOS A    | 0.0      | 0.0      | 0.01   | 0.01      | 59.9    |
| 3           | R2                 | 1            | 0.0     | 0.058 | 6.1     | LOS A    | 0.0      | 0.0      | 0.01   | 0.01      | 57.5    |
| Approach    | 1                  | 114          | 0.0     | 0.058 | 0.1     | NA       | 0.0      | 0.0      | 0.01   | 0.01      | 59.9    |
| North: We   | est Street (North) | )            |         |       |         |          |          |          |        |           |         |
| 7           | L2                 | 33           | 0.0     | 0.076 | 5.5     | LOS A    | 0.0      | 0.0      | 0.00   | 0.13      | 57.2    |
| 8           | T1                 | 114          | 0.0     | 0.076 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.13      | 58.8    |
| Approach    | 1                  | 147          | 0.0     | 0.076 | 1.3     | NA       | 0.0      | 0.0      | 0.00   | 0.13      | 58.4    |
| All Vehicle | es                 | 261          | 0.0     | 0.076 | 0.7     | NA       | 0.0      | 0.0      | 0.00   | 0.08      | 59.1    |

## **Intersection 10 [2028 Design AM] Movement Summary:**

**∇**Site: 110 [2028 Design AM]

Middle / Site Access 3 Giveway / Yield (Two-Way)

| Civeway /   | 11614 (1 440-4     | vay           |       |       |         |          |          |          |        |           |         |
|-------------|--------------------|---------------|-------|-------|---------|----------|----------|----------|--------|-----------|---------|
| Moveme      | nt Performan       | ce - Vehicles |       |       |         |          |          |          |        |           |         |
| Mov         | OD                 | Demand        | Flows | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
| ID          | Mov                | Total         | HV    | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|             |                    | veh/h         | %     | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| East: Midd  | dle Street (Eas    | st)           |       |       |         |          |          |          |        |           |         |
| 5           | T1                 | 78            | 0.0   | 0.042 | 0.0     | LOS A    | 0.0      | 0.2      | 0.01   | 0.03      | 59.7    |
| 6           | R2                 | 4             | 0.0   | 0.042 | 5.6     | LOS A    | 0.0      | 0.2      | 0.01   | 0.03      | 57.4    |
| Approach    |                    | 82            | 0.0   | 0.042 | 0.3     | NA       | 0.0      | 0.2      | 0.01   | 0.03      | 59.6    |
| North: Site | North: Site Access |               |       |       |         |          |          |          |        |           |         |
| 7           | L2                 | 1             | 0.0   | 0.021 | 5.6     | LOS A    | 0.1      | 0.5      | 0.14   | 0.57      | 53.3    |
| 9           | R2                 | 24            | 0.0   | 0.021 | 5.8     | LOS A    | 0.1      | 0.5      | 0.14   | 0.57      | 52.8    |
| Approach    |                    | 25            | 0.0   | 0.021 | 5.8     | LOS A    | 0.1      | 0.5      | 0.14   | 0.57      | 52.8    |
| West: Mid   | dle Street (We     | est)          |       |       |         |          |          |          |        |           |         |
| 10          | L2                 | 35            | 0.0   | 0.024 | 5.5     | LOS A    | 0.0      | 0.0      | 0.00   | 0.45      | 54.7    |
| 11          | T1                 | 11            | 0.0   | 0.024 | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.45      | 56.1    |
| Approach    |                    | 46            | 0.0   | 0.024 | 4.2     | NA       | 0.0      | 0.0      | 0.00   | 0.45      | 55.0    |
| All Vehicle | es                 | 153           | 0.0   | 0.042 | 2.4     | NA       | 0.1      | 0.5      | 0.03   | 0.24      | 56.9    |

#### **Intersection 10 [2028 Design PM] Movement Summary:**

**∇**Site: 110 [2028 Design PM]

Middle / Site Access 3 Giveway / Yield (Two-Way)

| <b>Uu</b> , , |                  | · ~ <i>y ,</i> |     |       |         |          |                   |          |        |           |         |
|---------------|------------------|----------------|-----|-------|---------|----------|-------------------|----------|--------|-----------|---------|
| Moveme        | nt Performan     | ce - Vehicles  |     |       |         |          |                   |          |        |           |         |
| Mov           | OD               | Demand Flows   |     | Deg.  | Average | Level of | 95% Back of Queue |          | Prop.  | Effective | Average |
| ID            | Mov              | Total          | HV  | Satn  | Delay   | Service  | Vehicles          | Distance | Queued | Stop Rate | Speed   |
|               |                  | veh/h          | %   | v/c   | sec     |          | veh               | m        |        | per veh   | km/h    |
| East: Midd    | dle Street (East | :)             |     |       |         |          |                   |          |        |           |         |
| 5             | T1               | 52             | 0.0 | 0.034 | 0.1     | LOS A    | 0.1               | 0.5      | 0.08   | 0.10      | 58.7    |
| 6             | R2               | 11             | 0.0 | 0.034 | 5.8     | LOS A    | 0.1               | 0.5      | 0.08   | 0.10      | 56.6    |
| Approach      |                  | 63             | 0.0 | 0.034 | 1.1     | NA       | 0.1               | 0.5      | 0.08   | 0.10      | 58.3    |
| North: Site   | e Access         |                |     |       |         |          |                   |          |        |           |         |
| 7             | L2               | 1              | 0.0 | 0.050 | 5.6     | LOS A    | 0.2               | 1.1      | 0.16   | 0.58      | 53.2    |
| 9             | R2               | 57             | 0.0 | 0.050 | 5.9     | LOS A    | 0.2               | 1.1      | 0.16   | 0.58      | 52.7    |
| Approach      |                  | 58             | 0.0 | 0.050 | 5.9     | LOS A    | 0.2               | 1.1      | 0.16   | 0.58      | 52.7    |
| West: Mid     | Idle Street (Wes | st)            |     |       |         |          |                   |          |        |           |         |
| 10            | L2               | 105            | 0.0 | 0.060 | 5.5     | LOS A    | 0.0               | 0.0      | 0.00   | 0.54      | 53.9    |
| 11            | T1               | 7              | 0.0 | 0.060 | 0.0     | LOS A    | 0.0               | 0.0      | 0.00   | 0.54      | 55.3    |
| Approach      |                  | 112            | 0.0 | 0.060 | 5.2     | NA       | 0.0               | 0.0      | 0.00   | 0.54      | 54.0    |
| All Vehicle   | es               | 233            | 0.0 | 0.060 | 4.2     | NA       | 0.2               | 1.1      | 0.06   | 0.43      | 54.8    |