DISCLAIMER

This document is provided for information purposes only in connection with the public exhibition of the Planning Proposal to amend the Great Lakes LEP 2014 in respect of increased height of building and maximum floor space ratio controls applying to land in the Forster Civic Precinct Site (Lot 11 - 13 DP 47987).

Viewers of this document must not download, copy, print, save or otherwise reproduce this document. In addition, viewers are not entitled to rely on its content.

This document has been prepared by Regional Geotechnical Solutions, and all intellectual property rights in connection with this document remain with that entity.

Kukas Brothers

Proposed Forster Civic Precinct Project Cnr Lake, West and Middle Street, Forster

Geotechnical Assessment

Report No. RGS01471.1-AB 31 January 2016

Manning-Great Lakes

Port Macquarie

Coffs Harbour

RGS01471.1-AB

31 January 2016

Kukas Brothers PO Box 205 FORSTER NSW 2290

Attention: Mal Kukas

Dear Mal,

RE: Proposed Forster Civic Precinct Project
Cnr Lake, West and Middle Street, Forster

Geotechnical Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a geotechnical assessment for the proposed Forster Civic Precinct Project at the corner of Lake, West and Middle Street, Forster.

Surface and subsurface conditions at the site as well as comments and recommendations on foundation conditions, earthworks and design parameters for foundation designs are presented in the attached report.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of

Regional Geolechnical Solutions Ply Ltd

Steve Morton

Principal Engineer

Table of Contents

1 INTRODUCTION	1
2 FIELD WORK	1
3 LABORATORY TESTING	
4 SITE CONDITIONS	2
4.1 Surface Conditions	
4.2 Subsurface Conditions	4
5 PROPOSED DEVELOPMENT AND GEOTECHNICAL CONSTRAINTS	5
6 EXCAVATION CONDITIONS AND DEWATERING	6
7 EARTH RETENTION & BATTERED SLOPES	6
8 INFILTRATION RATES	7
9 SOIL AGGRESSIVITY	
10 ACID SULFATE SOILS	
11 FOUNDATIONS	9
11.1 Foundation Options	9
11.2 Stiffened Raft Footings	9
11.3 Piled Foundations	
12 EARTHQUAKE SITE FACTOR	11
13 LIMITATIONS	1

Figures

Figure 1 Investigation Location Plan

Figure 2 Cross - Section

Appendices

Appendix A Results of Field Investigations

Appendix B Results of Laboratory Testing

Appendix C Determination of the Geotechnical Strength Reduction Factor

1 INTRODUCTION

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a geotechnical assessment of the proposed Forster Civic Precinct Project at the corner of Lake, West and Middle Streets, Forster.

It is understood that the proposed development comprises:

- Council Works Library and Civic Centre;
- Evermore Retirement Village 138 Retirement units and common areas;
- Retail precinct small shopping centre, restaurants, cinema, retail and
- Hotel Hotel units, serviced apartments, restaurant, lounge child care and gym.

The proposed development will comprise up to eleven stories plus up to two basement levels and will be constructed in various stages. Excavations would therefore be anticipated to be around 6 to 7m depth.

The purpose of the work described herein was to address:

- Foundation design parameters for shallow and piled foundations as appropriate;
- Earth retention parameters for the design of basement earth retention systems at the site;
- Assessment of geotechnical conditions affecting pile construction or installation;
- Potential for ground heave and damage to adjacent structures or neighbouring piles;
- Presence of acid sulfate soils at the site and the need for an acid sulfate soil management plan:
- Assessment of site conditions on pile and concrete durability, (sulphates, chlorides, pH in soil and water);
- Groundwater level, dewatering requirements and possible effect on surrounding buildings;
- Short and long term design parameters for the basement shoring design;
- Recommendations on acceptable temporary and permanent batter slopes;
- Earthquake site factor (to AS1170.4) and liquefaction potential;
- Any other comments relevant to design and construction as may be revealed by the investigation and testing.

2 FIELD WORK

Field work for the assessment was undertaken on 16 January 2017 and was based on the supplied drawinas. Fieldwork included:

- Observation of site and surrounding features relevant to the geotechnical conditions of the site;
- Logging and sampling of six boreholes using Toyota 4WD mounted drilling rig;

- Six Cone Penetration Tests (CPT) within the development footprint; and
- Four in-situ falling head permeability tests.

Engineering logs of the boreholes, CPT results, and infiltration test results are presented in Appendix A. The locations of the boreholes, infiltration tests and CPT are shown on Figure 1. They were obtained on site by measurement relative to existing site features.

3 LABORATORY TESTING

Samples retrieved during field work were returned to a NATA registered laboratory for testing which included the following:

- · Soil Aggressivity testing on two samples; and
- ASS Screening tests on eight samples and One Chromium Reducible Sulfur analysis to detect oxidisable sulphur and acid generating potential.

4 SITE CONDITIONS

4.1 Surface Conditions

The site is situated in flat to gently undulating topography associated with a broad, wind-blown sand plain on the eastern side of Wallis Lake.

Surface slopes across the site are generally flat to 1°, increasing towards the south west corner up to 3 to 5° toward south at the southern boundary of the site.

An image of the site taken from the NSW Department of Property Information website is reproduced below.

Approximate extent of site in red.

The site is bound by residential houses to the east and south east, Lake Street to north, West Street to the west and Middle Street to the south. Currently the site is vacant except for some paved areas on the north-western portion of the site. Several large trees were present across the site. Previously the site was occupied by a school and associated buildings such as toilet blocks. A small house was observed approximately in the middle of the site.

Drainage of the site would be via a combination of overland flow and surface infiltration.

A selection of images of the site is presented below.

Looking northeast toward Lake Street from middle of site.

Looking northwest toward Lake Street from eastern part of site.

Looking south from eastern part of site.

Looking west toward West Street showing paved areas.

Looing north from south west corner of site near Middle Street

Looking south east from western portion of site showing abandoned toilet facilites

4.2 Subsurface Conditions

The Forster 1:100000 Quaternary Geology map indicates that the site is situated in an area underlain by Pleistocene backbarrier flats which comprise marine sand, indurated sand, silt, clay, gravel, organic mud and peat.

The investigations encountered a deep sand profile. The profile encountered within the boreholes and CPTs undertaken for this investigation is summarised in Table 1 and Figure 2.

Table 1: Summary of Subsurface Materials

	And the second of the second	The state of the s		Depth to	Base of M	aterial La	yer (m)	211
Material Unit	Material Name	Material Description	CPT1 BH3, BH6	CPT2 BH5	CPT3 BH4	CPT4 BH2	CPT5	CPT6 BH1
1	TOPSOIL	SAND, fine to medium, grey with organic fines, Sandy Gravel up to 0.15m encountered at BH3	0.3	0.1	0.25	0.1	0.1	0.1
2a	Aeolian Sand (MD)	SAND, fine to medium, white	2.8, 12.3	2.6	3.65, 11.75	2.25, 11.85	2.5, 11.48	1.6,
2b	Aeolian Sand – with Indurated layers (D - VD)	SAND, fine to medium, white with at the bottom up to 800mm of medium dense sand. Interlayered thin medium dense bands and indurated sands encountered.	9.23, 14.5	≥ 4.65*	9.84**, 13.62	9.6, 14.3	8.45, 13.87	7.5, 12.04
2c	Aeolian Sand (VL -L)	Silty SAND/Sandy Silt, fine to medium sand with thin very stiff layer of clay soil	10.7, 14.6		10.47, 13.65	10.01, 14.34	9.45, 13.89	8.01, 12.05
3	Alluvial Clay	CLAY/Silty CLAY, stiff to very stiff clay	≥ 15.4		≥ 15.45	≥ 15.5	≥ 18.2	≥15.0

Table Notes:

- ≥ Base of material layer not encountered
- Refusal on indurated sand layer
- ** Within 3.65 to 9.84m for CPT3 thin layer of Loose to Very Loose sand(5.2-5.5), Stiff to Very Stiff Clay (5.5-5.65) and Loose Sand (5.65-5.7) encountered.

Groundwater was encountered in all test locations at depths summarised in Table 2. Groundwater levels do fluctuate as a result of climatic variations such as prolonged rainfall or extended periods of low rainfall etc.

Table 2: Summary of Groundwater Depths (m) Below Existing Surface

CPT1	CPT2	CPT3	CPT4	CPT5	CPT6
BH3, BH6	BH5	BH4	BH2		BH1
4.0	4.0	3.0	4.0	3.8	3.4

It should be noted that fluctuations in groundwater levels can occur as a result of seasonal variations, temperature, rainfall and other similar factors, the influence of which may not have been apparent at the time of the assessment.

5 PROPOSED DEVELOPMENT AND GEOTECHNICAL CONSTRAINTS

The proposed development will I involve several stages that include up to 6m of excavation in the south west corner and up to 3m excavation over the rest of the site. Groundwater was encountered at depths of between 3.4 and 4.0 below current site level.

Pending review of the design loads, structures could be supported by raft foundations on Unit 2b or piles founded within the Unit 3 stiff to very stiff clay.

During excavations for a basement level groundwater inflows are likely to occur and a dewatering management plan is likely to be required.

6 EXCAVATION CONDITIONS AND DEWATERING

Excavation depths are currently not known, however, it is understood that single and double basement developments are proposed and these are likely to require excavations of up to 3m and 6m respectively. Excavation to these depths will encounter sands and will be achievable with conventional hydraulic excavators or backhoes, pending appropriate dewatering of the excavation area. Slow digging may be encountered in very dense sand horizons at depth, depending on the depth and width of excavation.

Estimated excavation depths are shown relative to groundwater levels and soil profiles encountered, on Figure 2. As shown by Figure 2, single basement excavations may not encounter the permanent groundwater table over much of the site, however, there may be localised inflows from perched water tables within the upper 3m, as perched water tables on lenses of indurated sand within the upper 3m of the profile are common in the area.

Excavations below 3m depth will encounter groundwater, and dewatering will be required. Management of construction dewatering will be necessary to manage the risk of damage to adjacent properties due to dewatering induced settlement. It is recommended that recharge and partial cutoff measures be employed during dewatering for excavation to reduce off-site drawdown impacts.

Partial cut-off measures could involve the use of sheet piles or similar, founded within the Unit 2a or Unit 2b sand materials. The excavation area could then be dewatered using a series of spear points inside the perimeter of the wall, together with a line of groundwater injection bores outside the partial cutoff wall to maintain groundwater levels beneath surrounding structures, which would limit groundwater drawdown outside the excavation and thereby reduce the risks of settlement due to lowering of the groundwater table.

Driving of sheet piles may result in settlement of the loose sands and could result in vibration and/or settlement impacts on the adjacent buildings. Alternatively, cut-off walls could be constructed using secant pilling. Secant pilling would result in significantly lower ground vibration impacts and could potentially be used for the basement walls subject to suitability from a structural and architectural perspective.

Prior to dewatering, detailed design of the dewatering system would need to be carried out by a dewatering specialist, and would also need to take into account potential impacts on nearby registered water bores.

7 EARTH RETENTION & BATTERED SLOPES

Where space permits, temporary batter slopes can be constructed in sand materials above the groundwater level at 1.5H:1V. Excavations below the water table will require dewatering and/or shoring using continuous steel shoring (eg. Sheet piles) or other temporary casing due to the potential for collapse of waterlogged sands into the excavation.

Temporary or permanent retaining walls at the site can be designed based on the following parameters:

•	Bulk unit weight, y	=	20 kN/m3
	Effective Friction Angle, Ø'	=	29°
	Effective Cohesion, c'	=	0 kPa
	Active Earth Pressure Coefficient, Ka	=	0.45
	Passive Earth Pressure Coefficient, Kp	=	2.20
	At Rest Earth Pressure Coefficient, Ko		0.75

Design of the walls must take into account any surcharge from loadings behind the wall. Drainage measures as described above, if properly maintained, should reduce pore pressures at the back of the wall to zero, however, pore pressures may still be generated at other points behind the wall. The design should incorporate an allowance for such pressures and a fluctuating groundwater table.

8 INFILTRATION RATES

Infiltration testing was undertaken in four locations during the investigation and a summary of the results is presented in Table 3 below.

Table 3: Summary of Infiltration Test Results

Test Location#	Measured Infiltration Rate (m/s)
IT1 below 0.5m from existing ground	6.78 x 10 ⁻⁴
IT2 below 0.65m from existing ground	1.02 x 10 ⁻²
IT3 below 0.7m from existing ground	1.03 x 10 ⁻²
IT4 below 0.5m from existing ground	1.48 x 10 ⁻³

The site is underlain by about 0.2m of topsoil overlying aeolian sand. For sand below topsoil and up to 0.6m depth an infiltration rate of 1 x 10^{-4} m/s can be adopted, and below 0.6m from the existing surface an infiltration rate of about 1.02×10^{-2} m/s is appropriate for the aeolian sands.

9 SOIL AGGRESSIVITY

Two samples were submitted to a NATA accredited laboratory for chemical analysis. The results are presented in Appendix B.

In accordance with the aggressivity and exposure classifications provided in AS2159-2009 the soil would be considered non-aggressive to steel and mildly aggressive for concrete.

10 ACID SULFATE SOILS

Sampling and analysis for the presence of Acid Sulfate Soils (ASS) has been undertaken in areas where excavations are expected to occur. Reference to the Forster 1:25,000 Acid Sulfate Soil Risk Map indicates the site is situated within an area with no known occurrence of ASS.

Eight samples of Aeolian soils obtained were screened for the presence of actual or potential ASS using methods 21Af and 21Bf of the ASSMAC Acid Sulfate Soils Manual. The test results are attached in Appendix B and are summarised in Table 4.

Table 4. Summary of ASS Screening Test results

Borehole	C - 11 T	Dept	h (m)	-11	pH (Fox)
#	Soil Type	From	То	рH _(ғ)	pri (rox)
вні	SAND	2.4	2.6	6.94	5.46
вн1	SAND	3.5	3.6	6.73	5.30
вн2	SAND	0.5	0.6	7.10	5.38
вн2	SAND	3.7	3.8	5.05	3.95
вн4	SAND.	0.8	1.0	5.75	4.88
BH4	SAND	3.7	3.9	6.12	5.20
вн5	SAND	1.4	1.5	6.15	5.13
вн6	SAND	4.0	4.1	6.51	5.21

In the ASS Screening test, pH <4 is an indicator of Actual ASS and pH_{FOX} values of less than 3 and a pH change of greater than 2 can be an indicator of Potential ASS. Based on the results, the soils encountered are not actual or potential acid sulfate soil.

To provide a more comprehensive assessment, one sample was submitted for Chromium Reducible Sulphur (CRS) analysis. A summary of the test results is presented in Table 5.

Table 5: Summary of CRS Analysis

		Sulfur Trail (% \$ Oxidisable)			
Borehole	Depth (m)	Texture	TAA	Action Criteria	Scr	Action Criteria
вн2	3.7 – 3.8	Coarse	67	18	0.007	0.03

The sample tested during the current investigation recorded Titratable Actual Acidity (TAA) concentrations that exceed the adopted action criteria, thus indicating that there is actual acidity.

CRS (Scr) results were below the adopted action criteria which indicates that the sample is not Potential ASS. Based on the results, the soils encountered within the assessment are acidic in nature but are not considered to be Acid Sulfate Soils due to the absence of oxidisable sulfur. As such, an Acid Sulfate Soil Management Plan will not be required. However, it would be prudent to apply lime at a rate of 6kg/tonne (dry weight) to excavation spoil that is to be re-used, to neutralise the acid present in the site soils. It is recommended that good quality agricultural lime be used and thoroughly mixed through before re-use.

11 FOUNDATIONS

11.1 Foundation Options

Based on the subsurface conditions encountered at the site, there are several options for support of proposed structures. These options include:

- Stiffened raft footings in the medium dense to dense sand in the upper profile, designed to accommodate total and differential settlements; or
- Friction piles founded within the medium dense to very dense sands

11.2 Stiffened Raft Footings

The building could be founded on a stiffened raft slab specifically designed to accommodate the expected settlements. For a stiffened raft slab founded on the existing sands in the upper profile an allowable bearing pressure of 200kPa could be adopted. For the assessment of settlements over the effective depth of influence for the slab, the elastic values for vertical response provided in Table 6 may be adopted.

11.3 Piled Foundations

Taking into account the close proximity of buildings to the site and the presence of deep sands, driven piles should not be adopted due to the likelihood of vibration induced damage. Grout injected piles (CFA or similar) will provide an appropriate alternative. Geotechnical design parameters for pile foundations have been provided in Table 6.

The distribution of the nominated soil types within the profile is summarised in Figure 2. End bearing piles founded in sands should be designed such that the base of the pile is not within four pile diameters of any underlying loose sand layer, or clay layer. Founding less than six diameters from the base of the dense or very dense sand layer will result in lower pile capacities than those shown, due to the influence of the underlying layer. Therefore, as a guide, 600mm diameter piles designed for end bearing should be founded either:

- In the dense sand above RL -6.5m (4 pile diameters above the underlying loose sand zone);
- In the medium dense to very dense sand between RL -10m and -11.5m (4 pile diameters above the underlying clay.

Alternatively, deeper piles can be utilised to take advantage of the available skin friction provided the end bearing is restricted to the values nominated in Table 6 for the underlying clay.

Table 6: Ultimate Design Parameters for Non-Displacement Piles

Material Unit	Material Name	Ultimate End Bearing Capacity, fb	Ultimate Shaft Adhesion- Compression, fms*	Effective Vertical Young's Modulus, E'v	Effective Horizontal Young's Modulus, E'h
2a	Aeolian Sand (MD)	3000 kPa	35 kPa	20 MPa	15 MPa
2b	Aeolian Sand (D - VD)	6000 kPa	40 kPa	30 MPa	20 MPa
2c	Aeolian Sand (VL -L)		20 kPa	15 MPa	12 MPa
3а	Alluvial Clay (St-Vst)	450 kPa	50 kPa	20 MPa	12 MPa

Notes: * For piles designed to resist uplift forces, it is recommended that the ultimate skin friction values given above be reduced by 50%

For pile design in accordance with AS2159-2009, 'Piling-Design and installation', the ultimate geotechnical strength (Rd,ug) can be calculated using the shaft capacity and ultimate end bearing capacity values provided in Table 6. Calculation of the design geotechnical strength (Rd,g) requires an assessment of the geotechnical strength reduction factor (Φ g), which is based on a series of project specific variables. In assessing a suitable geotechnical strength reduction factor for this project, the following assumptions have been made:

- Design of piles and pile groups will be undertaken in accordance with the recommendations presented in this report;
- Limited geotechnical involvement will occur during pile installation;
- Some performance monitoring of the supported structure during or after construction; and
- The foundations will be designed by a designer of at least moderate experience in similar geotechnical profiles and pile design;
- Well established pile design methods will be adopted.

Based on the above and in accordance with AS2159-2009, a risk rating of 1.97 is estimated. Therefore, assuming the pile configuration will have low redundancy a Geotechnical Strength Reduction Factor of $\Phi g = 0.56$ would be appropriate for the site if no static load testing is undertaken. This could be increased to $\Phi g = 0.71$ if a proportion of the piles are dynamically tested or $\Phi g = 0.75$ if a proportion of the piles are statically tested. In the event that any of the assumptions outlined above are not correct, the Geotechnical Strength Reduction Factor may change and further advice should be sought. Calculation sheets for assessment of the Geotechnical Reduction Factor are presented in Appendix C.

12 EARTHQUAKE SITE FACTOR

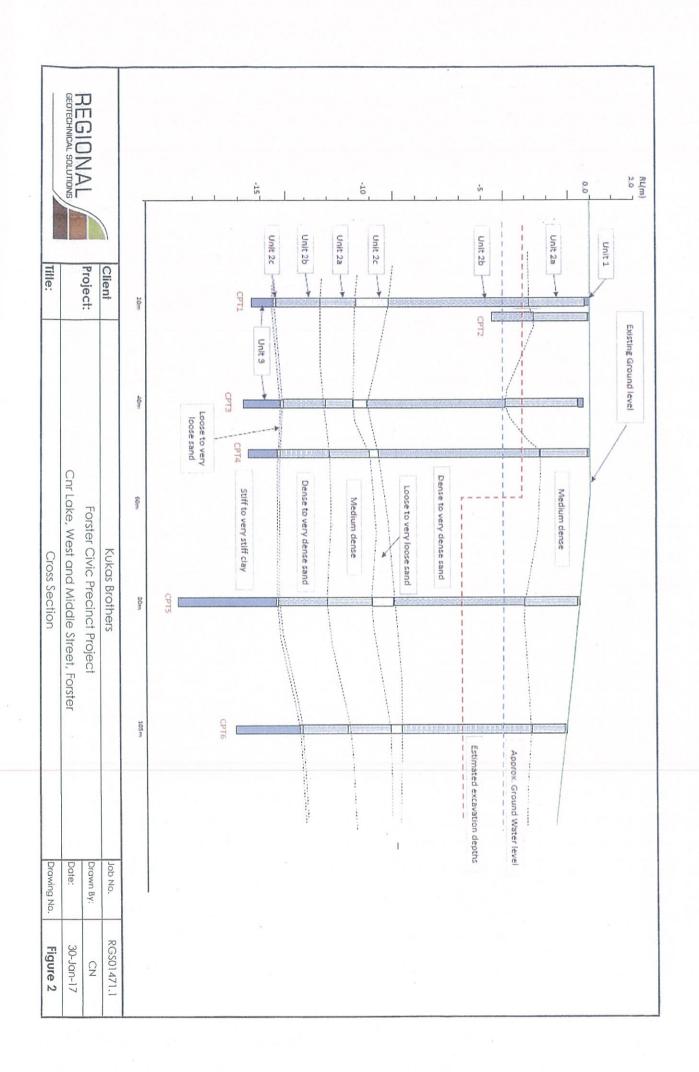
Based on the Australian Standard AS1170.4 – 2007 'Structural Design Actions Part 4: Earthquake Actions in Australia' the standard nominates earthquake factors based on Subsoil Class and specific locations within Australia. Based on the ground conditions encountered and the location of the site in Forster, design for earthquake effects can be undertaken for a Subsoil Class (De) Deep Soil Site and a site Hazard Factor (Z) of 0.08

13 LIMITATIONS

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points. If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.


For and on behalf of

Regional Geotechnical Solutions Pty Ltd

Steve Morton

Principal Engineer

Appendix A
Results of Field Investigations

CLIENT:

Kukas Brothers

PROJECT: Proposed Forster Civic Precint Project

LOCATION: Refer to Figure

RGS0471.1 Job No.:

Date:

16-Jan-17

CN

Test number: Hole radius (m):

Hole depth(m):

IT1

0.042

0.50

Test Location:

Refer to Figure 1

Surface RL:

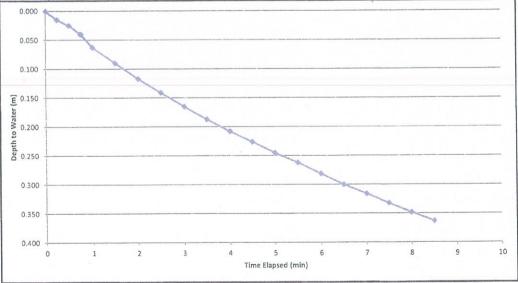
Not measured

Casing stickup(m):

1.30

Water table RL(m)

Unknown


Reading	Time elapsed (min)	Depth to water (m)	Height of water (m)
1	0	0.000	1.80
2	0.25	0.015	1.79
3	0.5	0.025	1.78
4	0.75	0.040	1.76
5	1	0.063	1.74
6	1.5	0.090	1.71
7	2	0.117	1.68
8	2.5	0.141	1.66
9	3	0.165	1.64
10	3.5	0.187	1.61
11	4	0.208	1.59
12	4.5	0.226	1.57
13	5	0.245	1.56
14	5.5	0.262	1.54
15	6	0.281	1.52
16	6.5	0.300	1.50
17	7	0.316	1.48
18	7.5	0.332	1.47
19	8	0.348	1.45
20	8.5	0.363	1.44
21	9	0.379	1.42
22	9.5	0.394	1.41
23	10	0.408	1.39

		Calculat	tions		
	2	Constant loss ti	me perio	d:	
Reading 1:	7	Time 1:	2	Height 1:	1.683
Reading 2:	16	Time 2:	6.5	Height 2:	1.500
Т	otal time	(min):	4.5	0	
Т	otal head	l loss (m):	-0.18	33	

In situ Permeability:

 $K = \frac{(Height \ 2 - Height \ 1)}{(Time \ 2 - Time \ 1)}$

K= 6.78E-04 m/sec (x 10m/sec)

CLIENT:

Kukas Brothers

PROJECT: Proposed Forster Civic Precint Project

LOCATION: Refer to Figure

Job No.:

Date: 16-Jan-17

Ву: CN

Test number: Hole radius (m):

Hole depth(m):

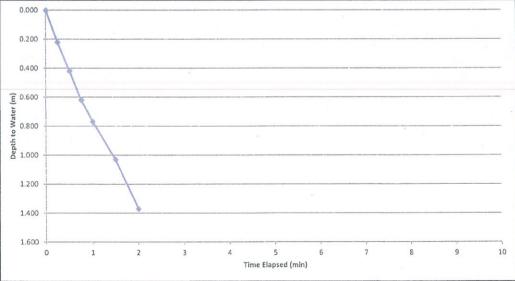
IT2 0.042

0.65

Test Location: Surface RL:

RGS0471.1

Casing stickup(m):


Water table RL(m)

Refer to Figure 1 Not measured

1.30

Unknown

Reading	Time elapsed (min)	Depth to water (m)	Height of water (m)			Calculat	tions		
1	0	0.000	1.95		<u>C</u>	Constant loss ti	me period	<u>d:</u>	
2	0.25	0.221	1.73	Reading 1:	3	Time 1:	0.5	Height 1:	1.530
3	0.5	0.420	1.53	Reading 2:	6	Time 2:	1.5	Height 2:	0.920
4	0.75	0.620	1.33		Total time	(min):	1.0	0	
5	1	0.770	1.18		Total head	loss (m):	-0.61	0	
6	1.5	1.030	0.92		1				
7	2	1.370	0.58						
8	2.5								
9	3	Anna man							
10	3.5								
11	4								
12	4.5								
13	5	Water Sales							
14	5.5								
15	6								
16	6.5	Ballard T							
17	7				In	situ Pern	neabil	ity:	
18	7.5					(Height 2 -	– Heiaht	1)	
	8	ESP STATE A			K	$= \frac{(Height 2 - Time 2)}{Time 2}$	- Time1)		
19	8.5								
20	A contract of the state of the				K	= 1.02	E-02	m/sec	
	9								
20						(x 10m/	/sec)		

CLIENT:

Kukas Brothers

PROJECT: Proposed Forster Civic Precint Project

LOCATION: Refer to Figure

Job No.:

RGS0471.1 Date:

CN

By:

16-Jan-17

Refer to Figure 1

REGIONAL

Test number:

Hole radius (m):

IT3

Hole depth(m):

0.042 0.70

Test Location:

Surface RL:

Not measured 1.30

Casing stickup(m):

Water table RL(m)

Unknown

Reading	Time elapsed (min)	Depth to water (m)	Height of water (m)
1	0	0.000	2.00
2	0.25	0.240	1.76
3	0.5	0.460	1.54
4	0.75	0.620	1.38
5	1	0.810	1.19
6	1.5	1.080	0.92
7	2	1.340	0.66
8	2.5	Green Plant of Barrier	
9	3	Taranta and	
10	3.5		
11	4	The street	
12	4.5	Carlo Carlo Carlo	
13	5	Andrew Stands	
14	5.5	Valuation	
15	6	Par.	
16	6.5	N. A. L.	
17	7		1.00
18	7.5	No. of the last of	- Y-
19	8	Carle 12	
20	8.5	STATE OF STATE	
21	9		
22	9.5	2000	
23	10		

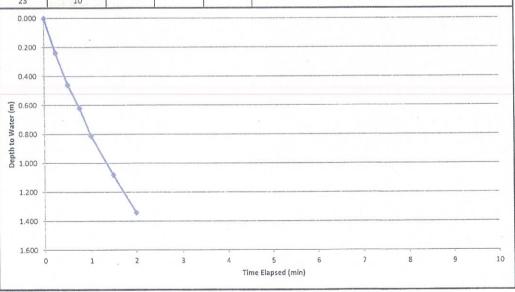
Calculations

Constant loss time period: Time 1: 0.5 Height 1:

Reading 1: 3 Reading 2: 6 Time 2:

> Total time (min): Total head loss (m):

1.540 0.920 1.5 Height 2:


1.00

-0.620

In situ Permeability:

 $K = \frac{(Height 2 - Height 1)}{(Height 2 - Height 1)}$ (Time 2 - Time1)

K= 1.03E-02 m/sec (x 10m/sec)

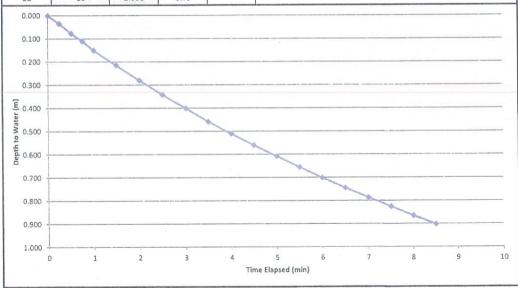
CLIENT:

Kukas Brothers

PROJECT: Proposed Forster Civic Precint Project

LOCATION: Refer to Figure

Job No.: Date:


RGS0471.1 16-Jan-17

Ву:

1.342 0.898

Test numbe	er:	IT1		Test Location	:	Refer to Fi	gure 1					
Hole radius	(m):	0.042		Surface RL:		Not measu	ured					
Hole depth	(m):	0.50		Casing sticku	Casing stickup(m):			1.30				
Depth to w	ater table (m):			Water table i	RL(m)	Unknown						
Reading Time elapsed (min)		Depth to water (m)	Height of water (m)		***************************************	Calcula	tions					
1	0	0.000	1.80			Constant loss ti	me perio	<u>d:</u>				
2	0.25	0.035	1.77	Reading 1:	10	Time 1:	3.5	Height 1				
3	0.5	0.077	1.72	Reading 2:	20	Time 2:	8.5	Height 2				
4	0.75	0.110	1.69		Total time	(min):	5.0	0				
5	1	0.150	1.65	1	Total head	loss (m):	-0.44	4				
6	1.5	0.215	1.59									
7	2	0,280	1.52									
. 8	2.5	0.342	1.46									
9	3	0.400	1.40									
10	3.5	0.458	1.34									
11	4	0.510	1.29									
12	4.5	0.560	1.24									
13	5	0.608	1.19									
14	5.5	0.655	1.15									
15	6	0.700	1.10									
16	6.5	0.745	1.06									
17	7	0.786	1.01		In	situ Pern	neabil	ity:				
18	7.5	0.826	0.97			(Height 2	– Height	1)				
19	8	0.865	0.94		K	$=\frac{(Height 2)}{(Time 2)}$	- Time1)				
20	8.5	0.902	0.90									
21	9	0.940	0.86		K	(= 1.48	8E-03	m/sec				
22	9.5	0.975	0.83			(x 10m,	/sec)					
23	10	1.008	0.79									

CLIENT:

Kukas Brothers

PROJECT NAME: Forster Civic Precinct Project

SITE LOCATION: Cnr Lake, West and Middle Street, Forster

TEST LOCATION: See figure 1

BOREHOLE NO:

LOGGED BY:

PAGE:

DATE:

BH1

1 of 1

JOB NO:

RGS01471.1 CN 16/1/16

DRILL TYPE: Toyota 4WD Mounted Drill Rig

EASTING: 454181 m SURFACE RL:

	Drill	ing and Sam	npling				Material description and profile information				Fiel	d Test	
	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics, colour, minor componer	ty/particle	MOISTURE	CONSISTENCY	Test Type	Result	Structure and additional observations
2				<u> </u>	[3][3]	SP	0.10m TOPSOIL: SAND, fine to medium grained	grey,	M				TOPSOIL
2000				-		SP	white SAND: Fine to medium grained, grey, whit	e					AEOLIAN
				-									
		0.50m 0.60m		0.5									
		_ D/		-		SP	SAND: Fine to medium grained, white						
				-									
		1.00m D		1.0									
		1.20m		-									
		1.50m		1.5									
		D D		1.3		1							
		1.70m		-									
		2.00m		2.0									
		2.10m D		-									
		2.40m D		2.5									
		2.60m											
				-									
				3.0									
						1							
	-	3.50m 3.60m		3.5					W	-			
		D											
						-							
_				4.0			Hole Terminated at 4.00 m		-		+		
					-				-				
				1									
				4.5									
					-								
	GEND:	:		Notes, S	amples	and Tes	ts	Consiste VS \	ncy /ery So	ft		JCS (kP	D Dry
	Wa	iter Level		U ₅₀ CBR			eter tube sample for CBR testing		Soft			25 - 50 50 - 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_		ite and time s iter Inflow	shown)	E ASS	Envi	ronment	al sample Soil Sample		Stiff /ery Sti	ff	2	100 - 20 200 - 40	
Stra		iter Outflow		В		Sample			Hard Friable			>400	
	(Gradational or ransitional str		Field Tes		oionisati	on detector reading (ppm)	Density	V L		Loose		Density Index <15% Density Index 15 - 35%
		ransitional str Definitive or d		DCP(x-y) HP	Dyna	amic per	netrometer test (test depth interval shown) ometer test (UCS kPa)		N D		Medic Dens	ım Dens	Density Index 35 - 65% Density Index 65 - 85%

CLIENT:

Kukas Brothers

PROJECT NAME: Forster Civic Precinct Project

SITE LOCATION: Cnr Lake, West and Middle Street, Forster

TEST LOCATION: See figure 1

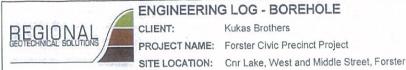
BOREHOLE NO: BH2

1 of 1 RGS01471.1

JOB NO: LOGGED BY:

PAGE:

DATE:


CN 16/1/16

Toyota 4WD Mounted Drill Rig DRILL TYPE:

EASTING: 454204 m

SURFACE RL:

	Drillir	ng and Sam	pling				Material description and profile information				Field	Test	
T	H.	SAMPLES	· RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/part characteristics,colour,minor components	ticle	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
1	ered			-	121121		TOPSOIL: SAND, fine to medium grained, grey SAND: Fine to medium grained, brown, grey		M				TOPSOIL AEOLIAN
AD/TC	7	0.50m 0.60m D		0.5		SP	SAND: Fine to medium grained, grey, white						
				1.0		SP	SAND: Fine to medium grained, white						
		1.50m 1.60m D		1.5									
		2.90m 3.00m D		3.9) 		3.50m						INDURATED SAND
	3.70m 3.80m D		4		SP	at the debugger	grey					INDURATED SAND	
				4	.5								
<u>N</u>	- - (- √	Vater Level Date and tim Nater Inflow Water Outfloo Changes		U ₅₀ CBR	50 Bi	ulk samp nvironme	meter tube sample de for CBR testing ental sample te Soil Sample	VS S F St VSt H Fb	Very Soft Firm Stiff Very Hard Frial	Stiff I ble	1/2	UCS (k <25 25 - 50 50 - 10 100 - 2 200 - 4 >400	D Dry M Moist W Wet Wo WPlastic Limit W L Liquid Limit
0		Gradationa transitiona Definitive	l strata	PID DCP(x	(-v) D	ynamic	sation detector reading (ppm) penetrometer test (test depth interval shown) tetrometer test (UCS kPa)	Densi	πĀ	V L MD	Lo	ose edium De	Density Index 15 - 359

TEST LOCATION: See figure 1

CLIENT:

Kukas Brothers

BH3 BOREHOLE NO:

PAGE:

1 of 1

JOB NO:

DATE:

RGS01471.1

LOGGED BY:

CN 16/1/16

Toyota 4WD Mounted Drill Rig

EASTING:

454191 m

SURFACE RL:

DRILL TYPE: AHD NORTHING: 6439193 m DATUM: BOREHOLE DIAMETER: 100 mm INCLINATION: 90° Field Test Material description and profile information Drilling and Sampling CLASSIFICATION CONSISTENCY MOISTURE Structure and additional Test Type GRAPHIC Result METHOD WATER MATERIAL DESCRIPTION: Soil type, plasticity/particle characteristics,colour,minor components RL DEPTH SAMPLES. (m) (m) FILL FILL: Sandy GRAVEL, fine to medium grained, fine D SP AD/TC Encountered to coarse grained Sand AEOLIAN М SP SAND: Fine to medium grained, grey, dark brown SP SAND: Fine to medium grained, white 0.5 Not 0.50m 0.60m 1.0 1.5 1.80m Becoming white, pale brown 2.0 2.00m and In Situ Tool 2.5 2.80m D 3.0 8.30,004 3.00m Hole Terminated at 3.00 m 3.5 4.0 4.5 RG NON-CORED BOREHOLE -Moisture Condition UCS (kPa) Consistency Notes, Samples and Tests LEGEND: Very Soft <25 VS Water 25 - 50 Moist М 50mm Diameter tube sample Bulk sample for CBR testing S Soft Wet Water Level W Firm 50 - 100 CBR 100 - 200 Plastic Limit W. (Date and time shown) St Stiff Environmental sample E 200 - 400 Liquid Limit Very Stiff Water Inflow Acid Sulfate Soil Sample VSt ASS Hard >400 Н Bulk Sample ─ Water Outflow В RG LIB 1.04.3.GLB Log Friable Fb Strata Changes Density Index <15% Very Loose Density Field Tests Gradational or Density Index 15 - 35% Loose Photoionisation detector reading (ppm) PID transitional strata Density Index 35 - 65% Medium Dense MD DCP(x-y) Dynamic penetrometer test (test depth interval shown) Definitive or distict Density Index 65 - 85% Dense Hand Penetrometer test (UCS kPa) strata change Density Index 85 - 100% Very Dense

ENGINEERING LOG - BOREHOLE

CLIENT:

Kukas Brothers

PROJECT NAME: Forster Civic Precinct Project

SITE LOCATION: Cnr Lake, West and Middle Street, Forster

TEST LOCATION: See figure 1

BOREHOLE NO:

BH4

PAGE:

1 of 1

RGS01471.1

JOB NO: LOGGED BY:

CN

DATE:

16/1/16

				TE	ESTLO	CATI	ON: See figure 1			D	ATE:	16/1/16	
		YPE:		4WD M		d Drill	Rig EASTING: CLINATION: 90° NORTHING: 6	454245 3439173		OATU	ACE RL: VI:	AHD	
-	Drilli	ng and Sam	npling				Material description and profile information				Field Test		
MELHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/ characteristics,colour,minor components	particle	MOISTURE	CONSISTENCY	Test Type Result	Structure and additional observations	
5					11111	-	0.10m TOPSOIL: SAND, fine grained, grey, brown		М			TOPSOIL	
2000				0.5		SP	SAND: Fine to medium grained, grey					AEOLIAN	
		0.80m		-		SP	SAND: Fine to medium grained, white						
		D 1.00m		1.0									
				1.5									
		1.80m											
		2.00m		2.0									
				2.5									
				3.0									
				3.5									
		3.70m							W				
		3.90m		4.9	0								
				4.	5		4.50m Hole Terminated at 4.50 m						
	-						TION TOTALIBROOM STATES III						
N	(C	/ater Level Date and time /ater Inflow		Notes, S U ₅₀ CBR E ASS B	Bul Env Aci	nm Dian k sampl vironme	meter tube sample le for CBR testing ntal sample e Soil Sample	Consis VS S F St VSt H	Very S Soft Firm Stiff Very S Hard	idff	UCS (<25 25 - 50 50 - 11 100 - 200 - >400	D Dry M Moist W Wet Wp Plastic Limit	
		Gradational transitional Definitive or strata change	or strata distict	Field T PID DCP(x- HP	ests Ph	otoionis namic p	ation detector reading (ppm) enetrometer test (test depth interval shown) etrometer test (UCS kPa)	Fb Densit		V L MD D VD	Very Loose Loose Medium De Dense Very Dense	Density Index 15 - 35% ense Density Index 35 - 65% Density Index 65 - 85%	

CLIENT:

Kukas Brothers

PROJECT NAME: Forster Civic Precinct Project

SITE LOCATION: Cnr Lake, West and Middle Street, Forster

TEST LOCATION: See figure 1

BOREHOLE NO:

BH5

PAGE:

DATE:

1 of 1

JOB NO: LOGGED BY:

CN 16/1/16

RGS01471.1

DRILL TYPE:

Toyota 4WD Mounted Drill Rig

454273 m SURFACE RL: EASTING:

	Drill	ling and San	pling				Material description and profile information				Field	Test	
	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor components	/particle	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	pere			_	RIE		0.10m TOPSOIL: SAND, fine to medium grained, b		M				TOPSOIL AEOLIAN
	Encountered			-		SP	SAND: Fine to medium grained, grey, white						ALOLIAN
	Enco	0.40m											
	Not	0.50m D		0.5									
				_			0.70m		-				
				1.0		SP	SAND: Fine to medium grained, white						
		1.40m											
- Contract of the second		1.50m D		1.5									
				2.0									
				2.5									
		2.80m D 3.00m		3.0			3.00m						
			1		-		Hole Terminated at 3.00 m						
				3.5									
					-								
				4.0									
					-								
				4.5	5								
					-								
Va	(D - W ∢ W	later Level Date and time later Inflow later Outflow	shown)	Notes, S U ₅₀ CBR E ASS B	50m Bulk Env Acid	m Diarr sample ironmer	eter tube sample e for CBR testing ital sample s Soil Sample	Consis VS S F St VSt H Fb	Very S Soft Firm Stiff Very S Hard Friable	tiff		UCS (kF <25 25 - 50 50 - 100 100 - 20 200 - 40 >400	D Dry M Moist W Wet W Wet W Plastic Limit
-		Changes Gradational of transitional s Definitive or strata change	trata distict	Field Te PID DCP(x-y HP	Pho) Dyn	amic pe	tion detector reading (ppm) enetrometer test (test depth interval shown) trometer test (UCS kPa)	Densit	У	V L MD	Loos	um Den	Density Index <15% Density Index 15 - 35% se Density Index 35 - 65% Density Index 65 - 85%

DRILL TYPE:

ENGINEERING LOG - BOREHOLE

CLIENT:

Kukas Brothers

PROJECT NAME: Forster Civic Precinct Project

SITE LOCATION: Cnr Lake, West and Middle Street, Forster

TEST LOCATION: See figure 1

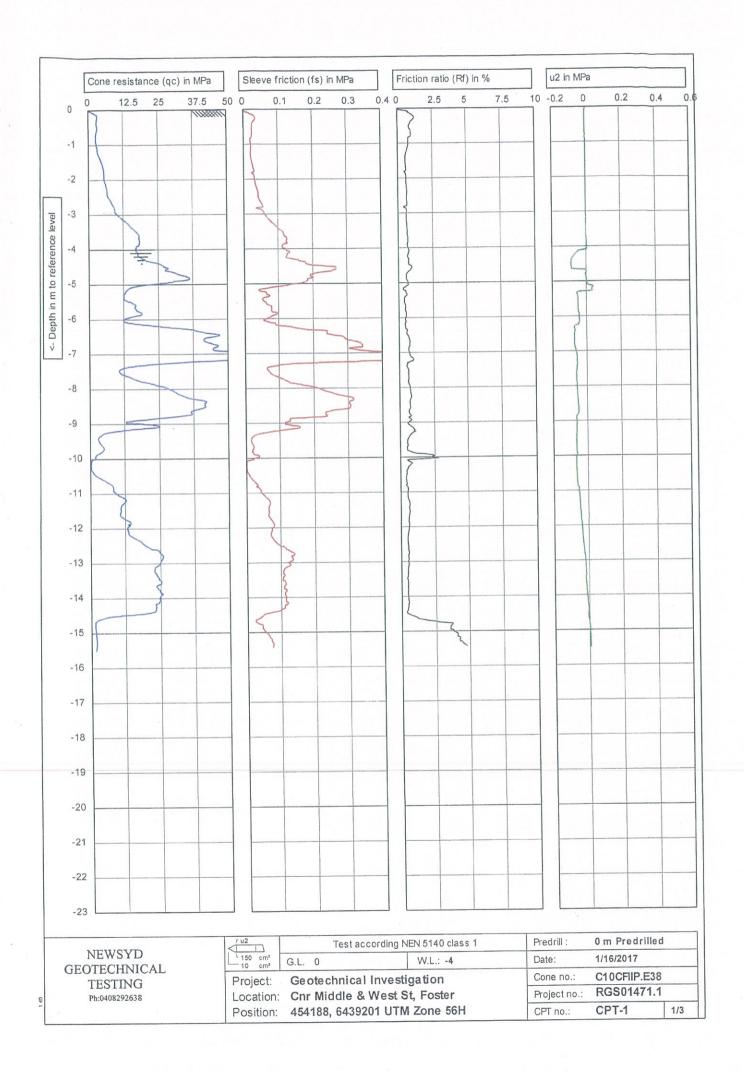
BOREHOLE NO: BH6

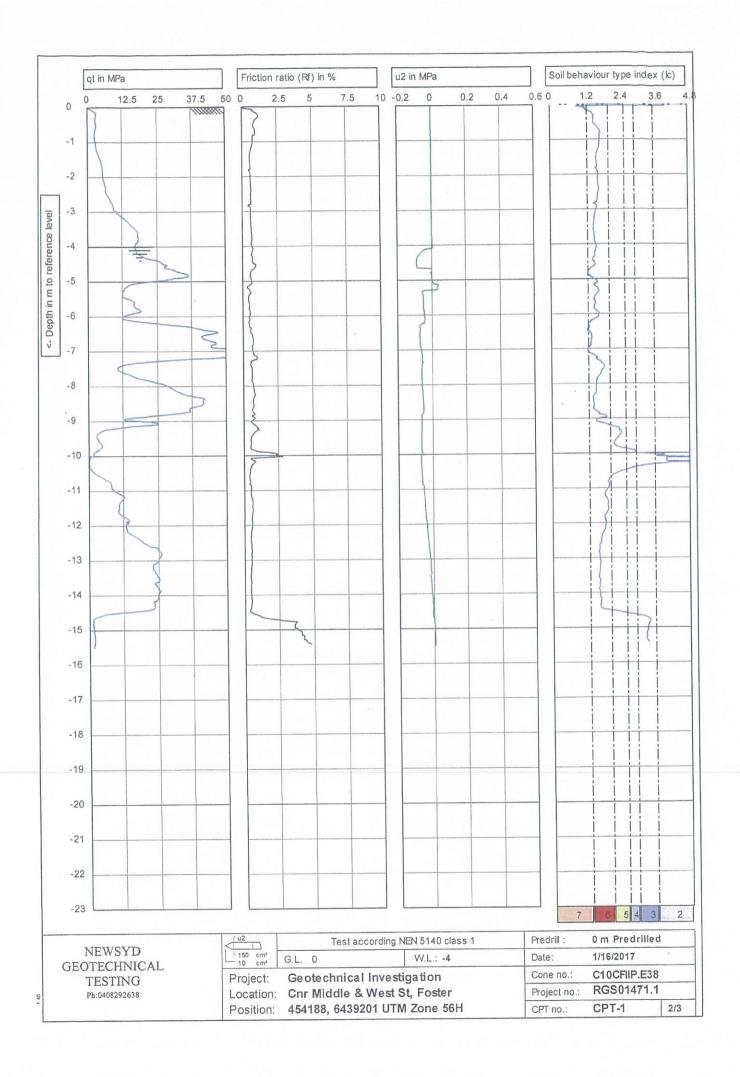
PAGE:

DATE:

1 of 1

RGS01471.1


JOB NO: LOGGED BY:


CN 16/1/16

Toyota 4WD Mounted Drill Rig

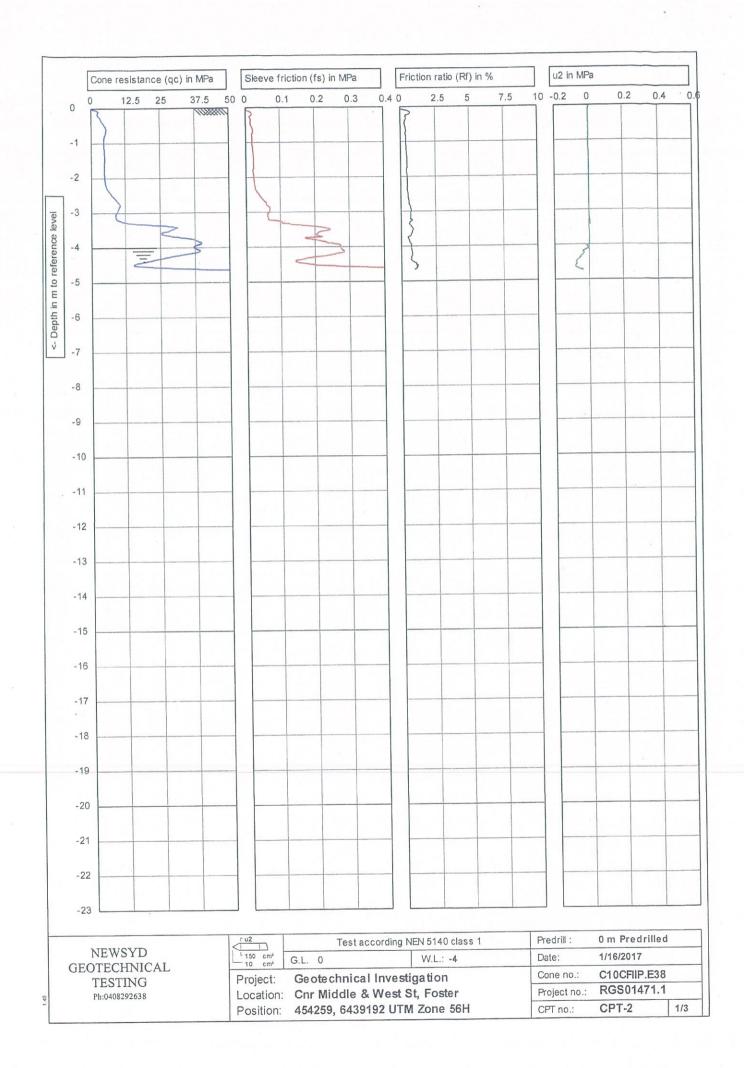
EASTING: 454181 m SURFACE RL:

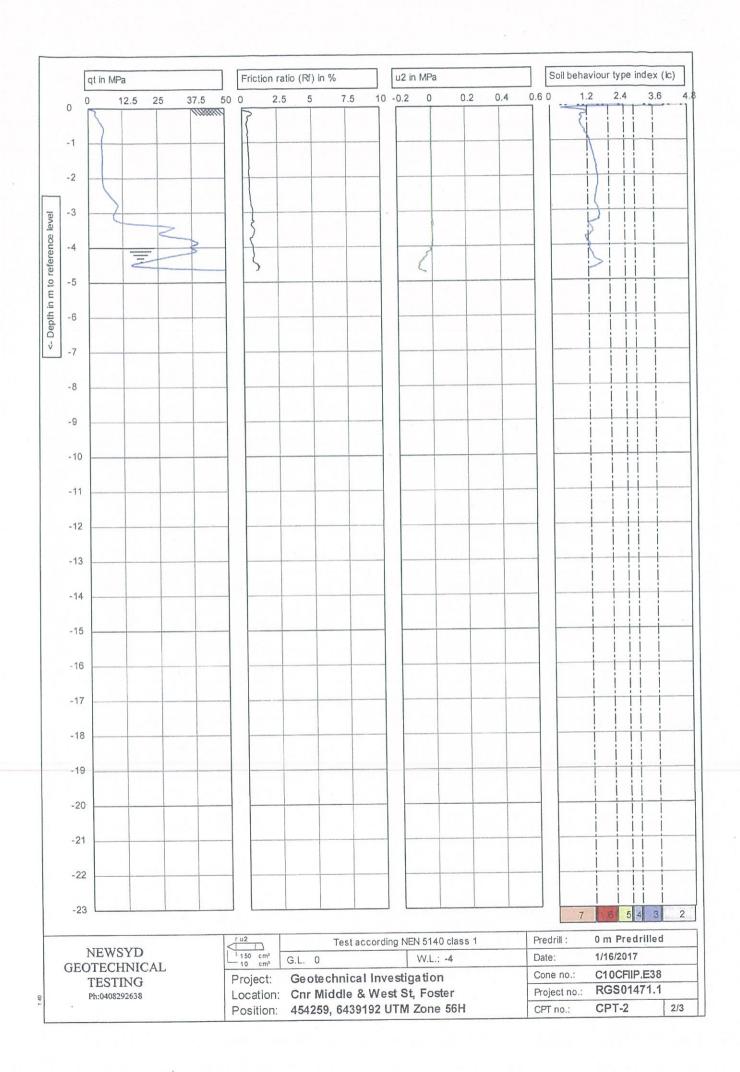
	Drill	ing and San	npling				Material description and profile information				Field	Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor components	particle	MOISTURE	CONSISTENCY	Test Type	Result	Structure and additional observations
2	red				[3][3]	SP	0.10m TOPSOIL: SAND, fine to medium grained, b	rown,	М				TOPSOIL AEOLIAN
AD/TC	Not Encountered			0.5		SP	\grey SAND: Fine to medium grained, grey, white						ALGENT
				1.0		SP	SAND: Fine to medium grained, white						
				1. <u>5</u>									
				2.0									
				2.5									
	-			3.0									
		4.00m		3.5									
	-	4.10m	1				4.10m Hole Terminated at 4.10 m				+		
				4.	5								
					-								
LI W	(C W 4 W	ater Level Date and time fater Inflow Vater Outflow		Notes, S U ₅₀ CBR E ASS B	50m Bull Env Acid	nm Dian k sampl rironmen d Sulfat	neter tube sample e for CBR testing ntal sample e Soil Sample	Consis VS S F St VSt H Fb	Very S Soft Firm Stiff Very S Hard Friable	tiff		UCS (k <25 25 - 50 50 - 10 100 - 2 200 - 4 >400	D Dry M Moist W Wet Wy Plastic Limit
Strata Chance Grad trans Defir					Pho y) Dyr	Photoionisation detector reading (ppm)			¥	V L MD D VD	Loos Med Den	ium Der	Density Index 65 - 85%

- (3) Clay
- (4) Silt mixture

St Sand mixture

(6) Sand clean to silty


7) Gravelly sand


NEWSYD
GEOTECHNICAL
TESTING
Ph:0408292638

Г u2	Test ac	Predrill:	
150 cm ²	G.L. 0	W.L.: -4	Date:
Project:	Geotechnical	Cone no.:	
	Cnr Middle &	Project no	
		01 UTM Zone 56H	CPT no.:

CPT-1

3/3

- (3) Clay
- (4) Silt mixture

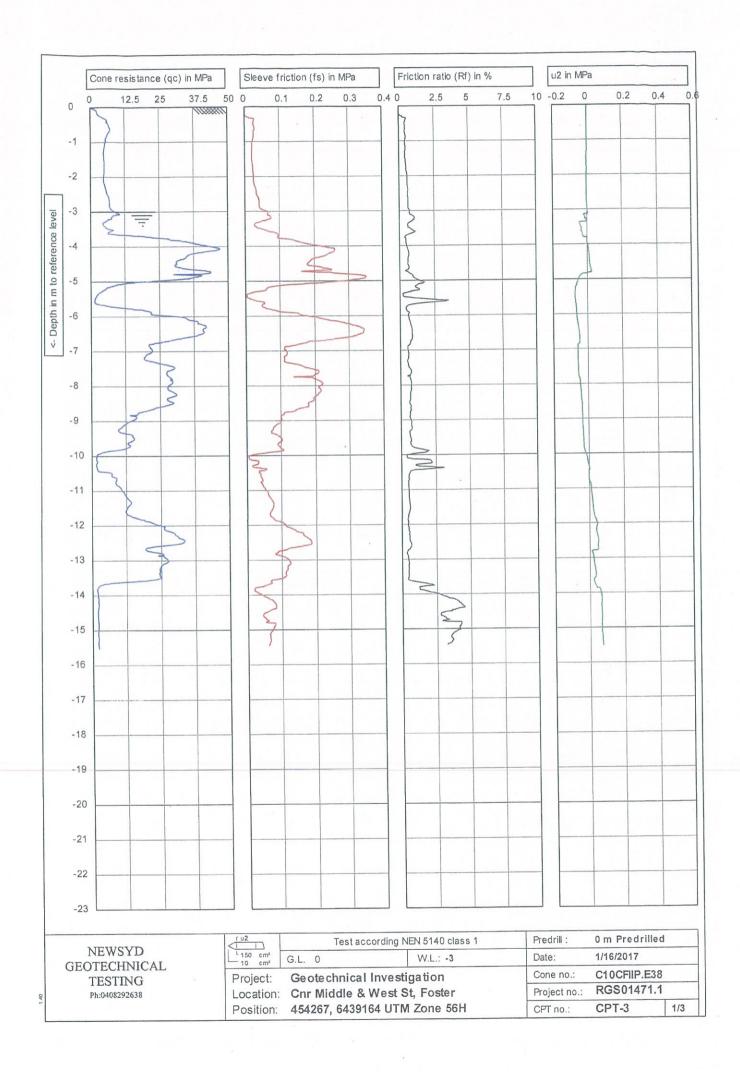
St. Rand moveme

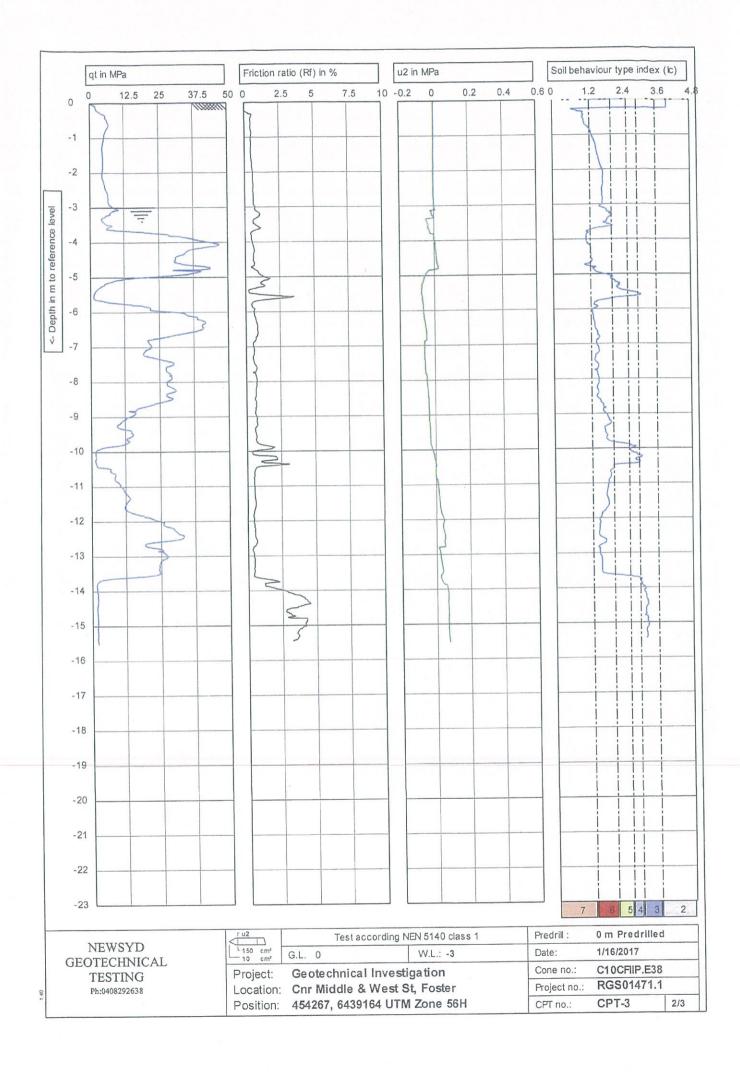
(6) Sand clean to silty

(7) Gravely sand

NEWSYD GEOTECHNICAL TESTING Ph:0408292638

u2				Test according NEN 5140 class 1				
150 10	c m²	G.L.	0		W.L.: -4			


Project: Ge ote chnical Investigation
Location: Cnr Middle & West St, Foster
Position: 454259, 6439192 UTM Zone 56H


Date:	1/16/2017	
Cone no.:	C10CFIIP.E38	
Project no.:	RGS01471.1	
CPT no.:	CPT-2	3/3

0 m Predrilled

Predrill:

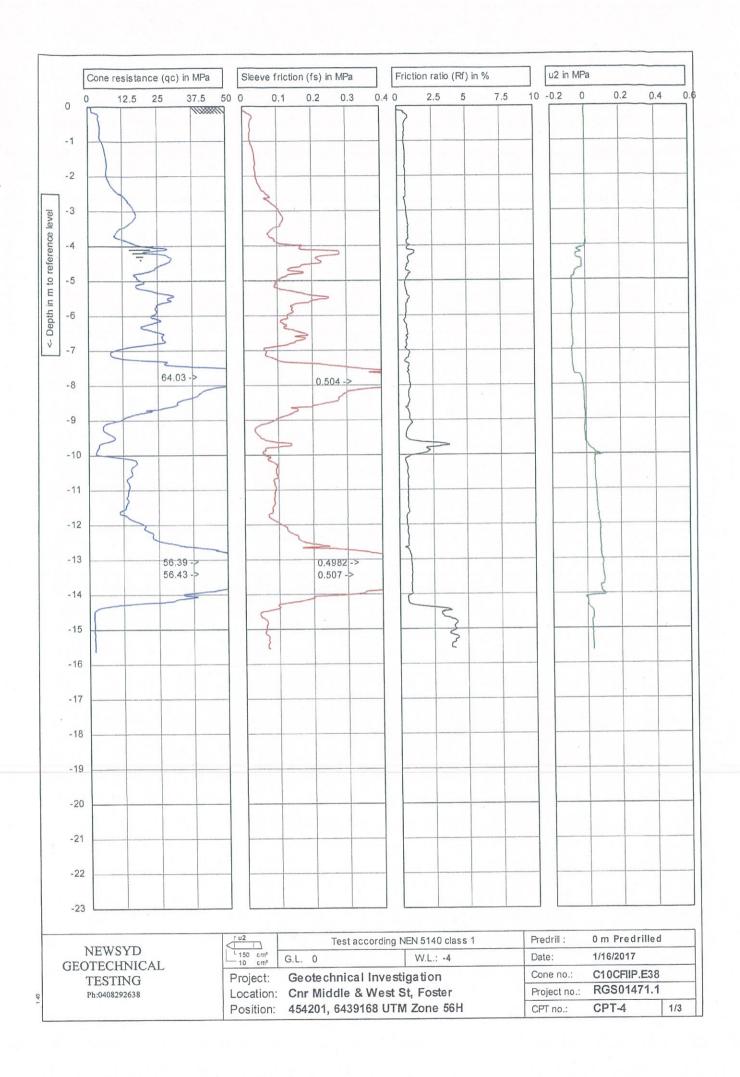
00

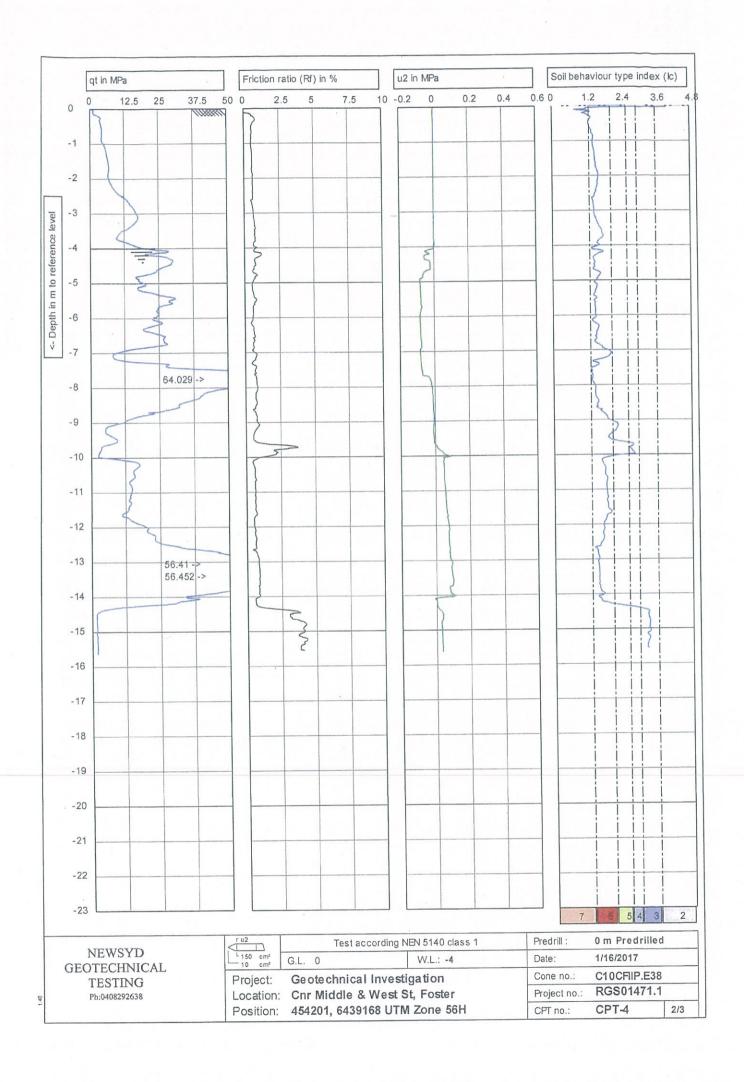
- (3) Clay
- (4) Silt mixture

18) Sand resulture

- (6) Sand clean to silty
- 7 Gravelly sand

NEWSYD
GEOTECHNICAL
TESTING
Ph:0408292638


	•				_
L 150 cm ²	G.L. 0	W.L.: -3	Date:	1/16/2017	
Project:	Geotechnical Investig	ation	Cone no.:	C10CFIIP.E38	
	Cnr Middle & West St		Project no.:	RGS01471.1	
Position:	454267, 6439164 UTM	Zone 56H	CPT no.:	CPT-3	


Test according NEN 5140 class 1

0 m Predrilled

Predrill:

1 40

(3) Clay

(4) Silt mixture

if Sand mixture

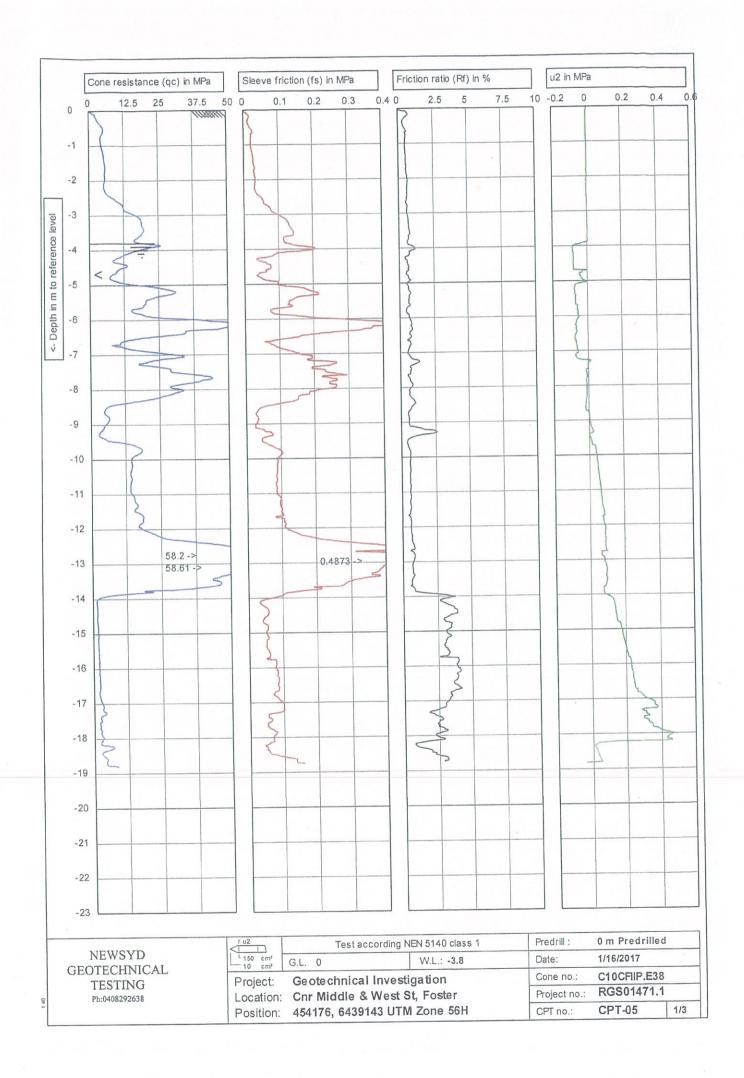
(6) Sand clean to silty

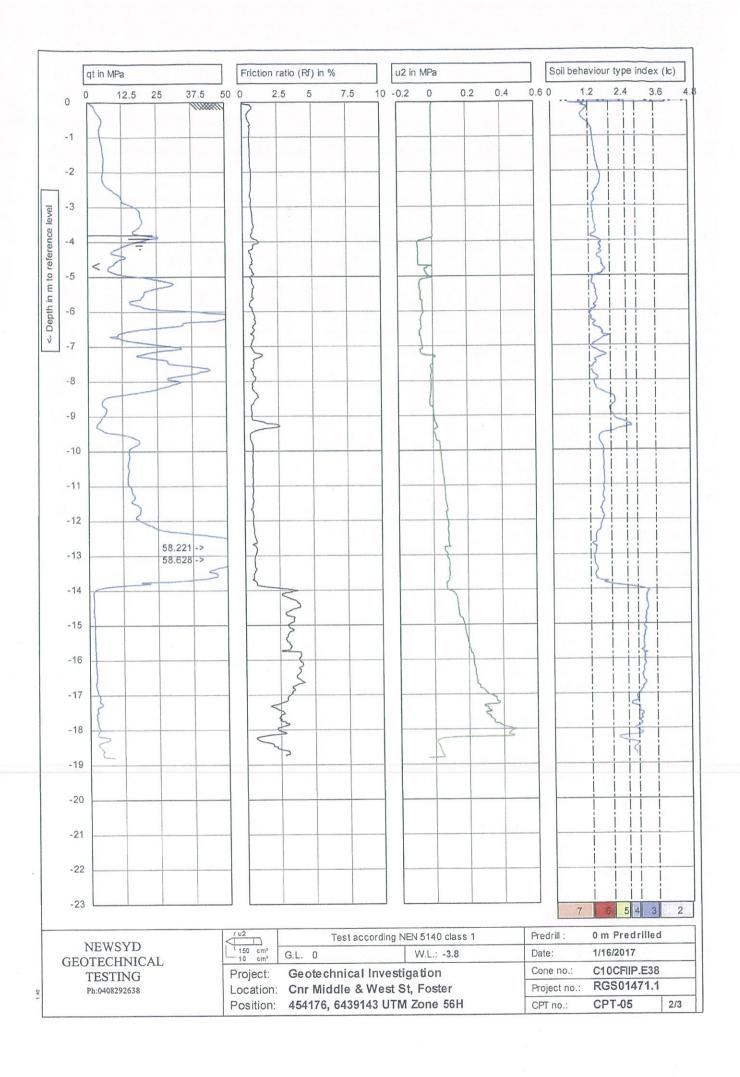
(7) Gravelly saind

NEWSYD GEOTECHNICAL TESTING Ph:0408292638 Test according NEN 5140 class 1

Project: Geotechnical Investigation
Location: Cnr Middle & West St, Foster
Position: 454201, 6439168 UTM Zone 56H

 Date:
 1/16/2017


 Cone no.:
 C10CFIIP.E38


 Project no.:
 RGS01471.1

Predrill:

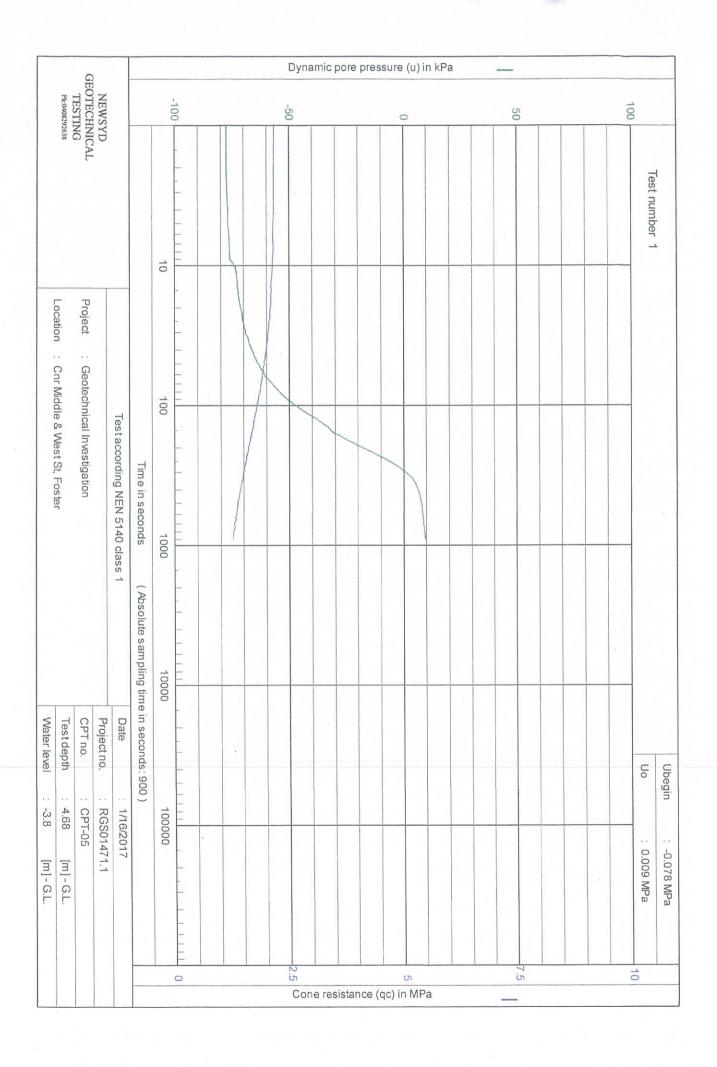
CPT no.: CPT-4 3/3

0 m Predrilled

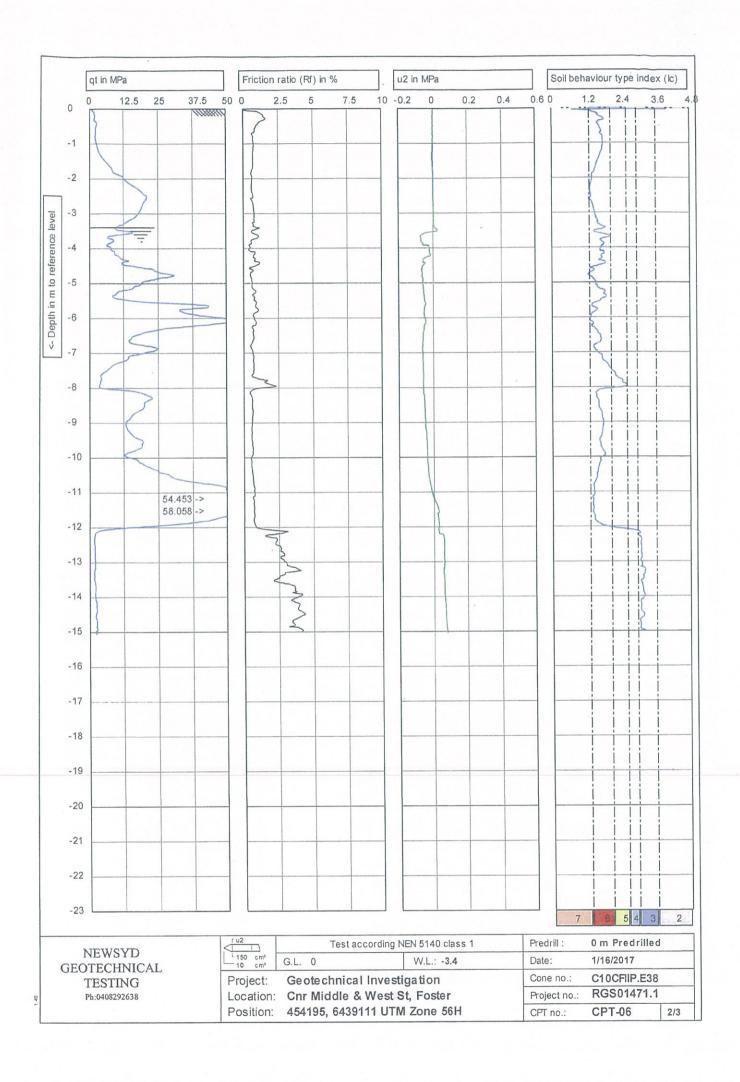
(3) Clay

(4) Silt mixture

(6) Sand clean to silty


(7) Gravelly sand

NEWSYD **GEOTECHNICAL TESTING** Ph:0408292638


10 cm ²	G.L. 0	V.V.L.: -3.8
Project:	Geotechnical Invest	igation
Location:	Cnr Middle & West S	St, Foster
Position:	454176, 6439143 UTN	Zone 56H

Test according NEN 5140 class 1

Predrill:	0 m Predrilled		
Date:	1/16/2017		
Cone no.:	C10CFIIP.E38		
Project no.:	RGS01471.1		
CPT no.:	CPT-05	3/3	

(3) Clay

(4) Silt mixture

51 Sand middle

(6) Sand clean to silty

(T) Gravelly sand

NEWSYD GEOTECHNICAL TESTING Ph:0408292638

L 150 cm ² 10 cm ²	G.L. 0 W.L.: -3.	4
Project:	Geotechnical Investigation	
Location:	Cnr Middle & West St, Foster	
Position:	454195, 6439111 UTM Zone 56	H

Test according NEN 5140 class 1

CPT-06

CPT no .:

3/3

40

Appendix B
Laboratory Test Results

RESULTS OF ACID SULFATE SOIL ANALYSIS

Analysis requested by Champak Nag. Your Project: RGS01471.1 8 samples supplied by Regional Geotechnical Solutions Pty Ltd on 18th January, 2017 - Lab. Job No. F6122

(44 Bent Street WINGHAM NSW 2429)

COLUMN TANGET TO THE PERSON TH	(COLT MCM							
Sample Site	EAL	TEXTURE	MOISTURE	ENT ENT		FIELD/ LAB PEROXIDE SCREENING TECHNIQUE	CREENING TECHNIQUE	
	code				Initial pH _F	pH _F ox	500	
	Service And	(note 7)	(% moisture (g moisture of total wet / g of oven weight) dry soll)	(g moisture / g of oven dry soil)	water	peroxide	pH change	Reaction
Method Info.	1000	**	x.k	Branch William	とうこう こうかんかん おいまま	Break - Jan Hay Bridge	A CONTRACTOR OF THE PROPERTY O	
RH1 2 4-2 6	F6122/1	Coarse	4.0	0.04	6.94	5.46	-1.48	Low
BH1 3.5-3.6	F6122/2	Coarse	10.7	0.12	6.73	5.30	-1.43	Low
BH2 0 5-0 6	F6122/3	Coarse	ယ ထ	0.04	7.10	5.38	-1.72	Low
BH2 3.7-3.8	F6122/4	Coarse	10.7	0.12	5.05	3.95	-1.10	Low
BH4 0 8-1 0	F6172/5	Coarse	1.6	0.02	5.75	4.88	-0.87	Low
BH4 3.7-3.9	F6122/6	Coarse	14.7	0.17	6.12	5.20	-0.92	Low
BHS 1.4-1.5	F6122/7	Coarse	2.5	0.03	6.15	5.13	-1.02	Low
BH6 4.0-4.1	F6122/8	Coarse	10.6	0.12	6.51	5.21	-1.30	Low

NOTE:

- 1 All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2 Samples analysed by SPOCAS method 23 (ie Suspension Peroxide Oxidation Combined Acidity & sulfate) and 'Chromium Reducible Sulfur' technique (Scr Method 22B)
- 3 Methods from Ahern, CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.
- 4 Bulk Density is required for liming rate calculations per soil volume. Lab. Bulk Density is no longer applicable field bulk density rings can be used and dried/ weighed in the laboratory.

 5 ABA Equation: Net Acidity = Potential Sulfidic Acidity (ie. Scrs or Sox) + Actual Acidity + Retained Acidity measured ANC/FF (with FF currently defaulted to 1.5)

- 6 The neutralising requirement, lime calculation, includes a 1.5 safety margin for acid neutralisation (an increased safety factor may be required in some cases)
- r For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and silty clays
- 8 ... denotes not requested or required. '0' is used for ANC and Snag calcs if TAA pH <6.5 or >4.5
 9 SCREENING, CRS, TAA and ANC are NATA accredited but other SPOCAS segments are currently not NATA accredited
- 10- Results at or below detection limits are replaced with '0' for calculation purposes.
- 11 Projects that disturb >1000 tonnes of soil, the ≥0.03% S classification guideline would apply (refer to acid sulfate management guidelines)
- 12 Results refer to samples as received at the laboratory. This report is not to be reproduced except in full.
- 13 ** denotes these test procedure or calculation are as yet not NATA accredited but quality control data is available

(Classification of potential acid sulfate material if: coarse Scr≥0.03%S or 19mole H⁺/t; medium Scr≥0.06%S or 37mole H⁺/t; fine Scr≥0.1%S or 62mole H⁺/t) - as per QUASSIT Guidelines

Accreditation No. 14960 Accreditation compliance with ISOH C 17025

NATA

Environmental Analysis Laboratory, Southern Cross University, Tel. 02 6620 3678, website: scu.edu.au/eal

checked: Laboratory Manager Graham Lancaster

RESULTS OF ACID SULFATE SOIL ANALYSIS

8 samples supplied by Regional Geotechnical Solutions Pty Ltd on 18th January, 2017 - Lab. Job No. F6122 Analysis requested by Champak Nag. Your Project: RGS01471.1

Principle Prin	Sample Ste	EAL	TEXTURE	MOISTURE	TURE	EIELDYJ	AB PEROXIDE	FIELD/ LAB PEROXIDE SCREENING TECHNIQUE	HNIQUE	TITRATAI	TITRATABLE ACTUAL ACIDITY (TAA)	REDUCE	REDUCED INORGANIC SULFUR	RETAINED ACIDITY (HCL extract) Sw	ACIDITY S _{NAS}	NET ACIDITY Chromium Suite	Chromium Suite
Coarse 1.6 Coarse Coarse Coarse Coarse Coarse 1.6 Coarse 1.4 Coarse 1.5 Coarse 1.5				le		Initial pH _p	pHyax				(To pH 6.5)	(% chron	ium reducible S)	(as %S _{HCL} - %S _{hcl})		male H*/tonne	kg CaCO ₃ /tonne DW
			(note 7)	C% moisture	(g moisture	water	peraxide	pH change	Reaction		-15						(includes 1.5 safety Factor
Hario Coarse 4.0 0.04 6.94 5.46 -1.48 Low		CONTRACT OF THE PARTY OF THE PA	STATE OF STA	of total wet weight)	/ g of even		· · · · · · · · · · · · · · · · · · ·	の日本	がある。	pH _{ka}	(mole H*/tonne)		(mole H ⁺ /tonne)	20	(mole H*/tonne)	(based on %Scrs)	when liming rate is *ve)
F6122/17 Coarse 4.0 0.04 6.94 5.46 -1.48 Low	Method Info.	1425575-23	42.392	11.0	N3 55 BE	No. of the last	ROWCOM BE	は のこから間	BUCKEN A	LACTUAL AC		(POTENTIAL.	ACCITY-Method 228)	Preside.	4CIDITY)	** & note 5	** & note 4 and 6
F6122/2 Coarse 10.7 0.12 6.73 5.30 -1.43 Low	BH1 2.4-2.6	F6122/1	Coarse	4.0	0.04	6.94	5.46	-1.48	Low	:	:	:	:	:	:	1	;
F6122/3 Coarse 3.8 0.04 7.10 5.38 -1.72 Low	BH1 3.5-3.6	F6122/2	Coarse	10.7	0.12	6.73	5.30	-1.43	Low	:	:	:	:	:	:		:
F6122/4 Coarse 10.7 0.12 5.05 3.95 -1.10 Low 4.40 67 0.007 4 0.007 3 74 F6122/5 Coarse 1.6 0.02 5.75 4.88 -0.87 Low <td>BH2 0.5-0.6</td> <td>F6122/3</td> <td>Coarse</td> <td>ى. ھ</td> <td>0.04</td> <td>7.10</td> <td>5.38</td> <td>-1.72</td> <td>Low</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td> <td>:</td>	BH2 0.5-0.6	F6122/3	Coarse	ى. ھ	0.04	7.10	5.38	-1.72	Low	:	:	:	:	:	:	:	:
F6122/6 Coarse 1.6 0.02 5.75 4.88 -0.87 Low	BH2 3.7-3.8	F6122/4	Coarse	10.7	0.12	5.05	3.95	-1.10	Low	4.40	67	0.007	4.	0.007	ω	74	6
F6122/6 Coarse 14.7 0.17 6.12 5.20 -0.92 Low	BH4 0.8-1.0	F6122/5	Coarse	1.6	0.02	5.75	4.88	-0.87	Low	:	:	:	:	:	:	:	:
F6122/7 Coarse 2.5 0.03 6.15 5.13 -1.02 Low	BH4 3.7-3.9	F6122/6	Coarse	14.7	0.17	6.12	5.20	-0.92	Low	:	:	:	:	:	:	:	:
F6122/8 Coarse 10.6 0.12 6.51 5.21 -1.30 Low	BH5 1.4-1.5	F6122/7	Coarse	2.5	0.03	6.15	5.13	-1.02	Low	:	:	:	·	;	ı	1	:
	BH6 4.0-4.1	F6122/8	Coarse	10.6	0.12	6.51	5.21	-1.30	Low	:	:	:	:	:	:	:	:

1 All analysis is Dry Weight (DW) - samples died and ground immediately upon arrival (unless supplied dried and ground)
2 - Samples analysed by SPOCAS method 23 (ie Suppendon Perceide Oxidation Combined Acidity & Battles) and 'Chromium Reducible Sulfur' technique (Sor - Method 228)
3 - Methods from Aherin, CR, McChea AR, Sulmen LA (2004), Acid Sulface Soils Laboratory Methods Guidelines, QLD DIMME.
4 - Bulk Denaity is required for liming rate calculations per sell volume, Lub. Bulk Denaity is required by Exporting are calculation, and control per sell volume. The Bulk Denaity is required to the proposed of the Control of the Soil - Actual Acidity - Restance Acidity - measured ANCFF (with Ff currently) defaulted to 1.5)
5 - ADA Equation: Net Acidity - Potential Sulfide. Acidity (ie. Son or Soil) + Actual Acidity - Restance Acidity - measured ANCFF (with Ff currently) defaulted to 1.5)
6 - The neutraling requirement, fine calculation, includes a 1.5 safety margin for sool metarillastion (in increased safety) Economy be required in some cases)
7 - For Texture: coarse - sands to loany sands; medium - sandy loans to light chyri fine - medium to heavy days and effty days
8 - . . . denotes not requised or required. 'D' is used for ANC and Soing cates IT TAX pit 46.5 or >4.5.
8 - denotes not requised on the ANC and Soing cates IT TAX pit 46.5 or >4.5.
9 - SCREENNAC, CRS, TAX and ANC are NATA accredited but other SPOCAS segments are currently not NATA accredited
10 - Requists at or below detection limits are replaced with 'U' for calculation purposes.
11 - Projects that estatub > 1000 tecnoses seal, the 2003'85 sealisfication guideline would apply (refer to acid sulfate managament guidelines).
12 - Requists refer to samples as recovered at the aboratory. That report is not to be reproduced accept in ful.
13 - **denotes these test procedure or calculation are as yet not NATA accredited but quality control data is available

(Classification of potential acid sulfate material if: coarse Scr20.03%S or 19mole H*/t: medium Scr20.06%S or 37mole H*/t: fine Scr20.1%S or 62mole H*/t) - as per QUASSIT Guidelines

MATA

Environmental Analysis Laboratory, Southern Cross University, Tel. 02 6620 3678, website: scu.edu.au/eal

checked: ... Graham Lancaster

Laboratory Manager

RESULTS OF SOIL ANALYSIS (Page 1 of 1)

2 samples supplied by Regional Geotechnical Solutions Pty Ltd on 18th January, 2017 - Lab Job No. F6123 Analysis requested by Champak nag. - Your Project: RGS01471.1

(44 Bent Street WINGHAM NSW 2429)

THE COLOR THE COLOR TOTAL PROPERTY.			
		Sample 1	Sample 2
		BH3 2.8-3.0m	BH5 2.8-3.0m
· · · · · · · · · · · · · · · · · · ·	Method		
Section 188	EAL job No.	F6123/1	F6123/2
Moisture (%)	inhouse	4	CJ
Texture	See note 2 below.	Coarse	Coarse
Soil pH (1:5 water)	Rayment and Lyons 4A1	5.93	6.08
Soil Conductivity (1:5 water dS/m)	Rayment and Lyons 4B1	0.017	0.010
Soil Resistivity (ohm.mm)	** Calculation	588,235	1,000,000
Chlorida (ma/ka)	** Water Extract- Payment and I your SA2h	<10	<10
	** Calculation	<0.001	<0.001
Sulfate (mg/kg)	** Water Extract-Apha 3120 ICPOES	11	8
Sulfate (as % SO ₃)	** Calculation	0.001	0.001
Chloride / Sulfate Ratio	**		

Notes:

- ppm = mg/Kg dried soil
- 2. For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and silty clays
- 3. All results as dry weight DW soils were dried at 60oC for 48hrs prior to crushing and analysis. 4. For conductivity 1 dS/m = 1 mS/cm = 1000μ S/cm
- 5. Methods from Rayment and Lyons. Soil Chemical Methods Australasia
- 6. Based on Australian Standard AS: 159-1995
- 7 Methods from Ahern, CR, McElnea AE , Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.
- 8. ** denotes these test procedure or calculation are as yet not NATA accredited but quality control data is available

NATA

Accreditation No. 14960.
Accreditation No. 14960.
Accreditation No. 14960.
Accreditation No. 14960.

Environmental Analysis Laboratory, Southern Cross University, Tel. 02 6620 3678, website: scu.edu.au/eal

checked: Laboratory Manager Graham Lancaster

Appendix C

Determination of the Geotechnical Strength Reduction Factor

Determination of the Geotechnical Strength Reduction Factor, Φ_g

AS2159-2009, Section 4.3.1

RGS01471.1

Job	Number:				

Client: Kukas Brothers

Project: Proposed Development

Site Location: Cnr Lake, West and Middle Street, Forster

Pile Testing?	No
Φ_{tf}	
Static/Rapid or Dynamic Load Testing?	
K	
P	

Weighting Factors & Individual Risk Ratings for Risk Factors (Table 4.3.2(A))

	Indiv	vidual Risk Rating (IRR)	
Risk Factor	Weighting Factor,	Risk weighting	Risk Rating
RISK PACTOR	w _i	(VL=1, M=3 or VH=5)	Misk Nating
Site			
Geological Complexity	2	3	6
Extent of Investigation	2	2	4
Amount/Quality of data	2	2	4
Design			
Experience in similar	1	2	2
Method assessment geotech parameters	2	2	4
Design Method	1	2	2
Method of utilizing results	2	2	4
Installation			,
Level of Construction Control	2	2	4
Level of Performance monitoring	0.5	3	1.5

ARR	2.17
Redundancy in System	Low

	Low	High
Basic Geotechnical Reduction Factor, Φ_{gb}	0.56	0.64

THE RESERVE OF THE PROPERTY OF	
Adopted Φ_{gb}	0.56

Experience of the Control of the Con	AND THE PROPERTY OF THE PROPER
Geotechnical Strength Reduction Factor, ϕ_g	0.56

Determination of the Geotechnical Strength Reduction Factor, ϕ_g

AS2159-2009, Section 4.3.1

Job Number:

RGS01471.1

Client:

Kukas Brothers

Project:

Proposed Development

Site Location:

Cnr Lake, West and Middle Street, Forster

Pile Testing?	Yes
Φ_{tf}	0.9
Static/Rapid or Dynamic Load Testing?	Static
K	0.5
P	2

Weighting Factors & Individual Risk Ratings for Risk Factors (Table 4.3.2(A))

	Individual Risk Rating (IRR)		
Risk Factor	Weighting Factor,	Risk weighting	Risk Rating
	w;	(VL=1, M=3 or VH=5)	
Site			
Geological Complexity	2	3 3	6
Extent of Investigation	2	2	4
Amount/Quality of data	2	2	4
Design			
Experience in similar	1	2	2
Method assessment geotech parameters	2	2	4
Design Method	1	2	2
Method of utilizing results	2	2	4
Installation			
Level of Construction Control	2	2	4
Level of Performance monitoring	0.5	3	1.5

ARR	2.17
Redundancy in System	Low

	Low	High
Basic Geotechnical Reduction Factor, Φ_{ab}	0.56	0.64

Adopted $oldsymbol{arPhi}_{gb}$	0.56
Geotechnical Strength Reduction Factor, Φ_g	0.73